Xie, Junshan Second-order moment convergence rates for spectral statistics of random matrices. (English) Zbl 1432.60016 Abstr. Appl. Anal. 2013, Article ID 595912, 7 p. (2013). Summary: This paper considers the precise asymptotics of the spectral statistics of random matrices. Following the ideas of A. Gut and A. Spătaru [J. Math. Anal. Appl. 248, No. 1, 233–246 (2000; Zbl 0961.60039); Ann. Probab. 28, No. 4, 1870–1883 (2000; Zbl 1044.60024)] and W. Liu and Z. Lin [Stat. Probab. Lett. 76, No. 16, 1787–1799 (2006; Zbl 1104.60015)] on the precise asymptotics of i.i.d. random variables in the context of the complete convergence and the second-order moment convergence, respectively, we will establish the precise second-order moment convergence rates of a type of series constructed by the spectral statistics of Wigner matrices or sample covariance matrices. MSC: 60B20 Random matrices (probabilistic aspects) 15B52 Random matrices (algebraic aspects) 60F15 Strong limit theorems Keywords:precise asymptotics; spectral statistics of random matrices Citations:Zbl 0961.60039; Zbl 1044.60024; Zbl 1104.60015 PDFBibTeX XMLCite \textit{J. Xie}, Abstr. Appl. Anal. 2013, Article ID 595912, 7 p. (2013; Zbl 1432.60016) Full Text: DOI OA License References: [1] Bai, Z. D.; Wang, X. Y.; Zhou, W., CLT for linear spectral statistics of Wigner matrices, Electronic Journal of Probability, 14, article 83, 2391-2417 (2009) · Zbl 1188.15032 [2] Guionnet, A.; Zeitouni, O., Concentration of the spectral measure for large matrices, Electronic Communications in Probability, 5, 119-136 (2000) · Zbl 0969.15010 · doi:10.1214/ECP.v5-1026 [3] Heyde, C. C., A supplement to the strong law of large numbers, Journal of Applied Probability, 12, 173-175 (1975) · Zbl 0305.60008 · doi:10.2307/3212424 [4] Gut, A.; Spătaru, A., Precise asymptotics in the Baum-Katz and Davis laws of large numbers, Journal of Mathematical Analysis and Applications, 248, 1, 233-246 (2000) · Zbl 0961.60039 · doi:10.1006/jmaa.2000.6892 [5] Gut, A.; Spătaru, A., Precise asymptotics in the law of the iterated logarithm, The Annals of Probability, 28, 4, 1870-1883 (2000) · Zbl 1044.60024 · doi:10.1214/aop/1019160511 [6] Gut, A.; Steinebach, J., Precise asymptotics-a general approach, Acta Mathematica Hungarica, 138, 4, 365-385 (2013) · Zbl 1299.60015 · doi:10.1007/s10474-012-0236-1 [7] Chow, Y. S., On the rate of moment convergence of sample sums and extremes, Bulletin of the Institute of Mathematics, 16, 3, 177-201 (1988) · Zbl 0655.60028 [8] Liu, W. D.; Lin, Z. Y., Precise asymptotics for a new kind of complete moment convergence, Statistics & Probability Letters, 76, 16, 1787-1799 (2006) · Zbl 1104.60015 · doi:10.1016/j.spl.2006.04.027 [9] Chen, Y.-Y.; Zhang, L.-X., Second moment convergence rates for uniform empirical processes, Journal of Inequalities and Applications, 2010 (2010) · Zbl 1202.60046 · doi:10.1155/2010/972324 [10] Su, Z. G., Precise asymptotics for random matrices and random growth models, Acta Mathematica Sinica, 24, 6, 971-982 (2008) · Zbl 1154.60034 · doi:10.1007/s10114-007-6365-8 [11] Vershynin, R.; Eldar, Y.; Kutyniok, G., Introduction to the non-asymptotic analysis of random matrices, Compressed Sensing, 210-268 (2012), Cambridge, UK: Cambridge University Press, Cambridge, UK [12] Bai, Z. D.; Silverstein, J. W., Spectral Analysis of Large Dimensional Random Matrices (2006), Beijing, China: Science Press, Beijing, China · Zbl 1196.60002 [13] Bai, Z. D.; Wang, X. Y.; Zhou, W., Functional CLT for sample covariance matrices, Bernoulli, 16, 4, 1086-1113 (2010) · Zbl 1210.60025 · doi:10.3150/10-BEJ250 [14] Bai, Z. D.; Miao, B. Q.; Yao, J.-F., Convergence rates of spectral distributions of large sample covariance matrices, SIAM Journal on Matrix Analysis and Applications, 25, 1, 105-127 (2003) · Zbl 1059.60036 · doi:10.1137/S0895479801385116 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.