Yang, Hongwei; Zhao, Qingfeng; Yin, Baoshu; Dong, Huanhe A new integro-differential equation for Rossby solitary waves with topography effect in deep rotational fluids. (English) Zbl 1432.76067 Abstr. Appl. Anal. 2013, Article ID 597807, 8 p. (2013). Summary: From rotational potential vorticity-conserved equation with topography effect and dissipation effect, with the help of the multiple-scale method, a new integro-differential equation is constructed to describe the Rossby solitary waves in deep rotational fluids. By analyzing the equation, some conservation laws associated with Rossby solitary waves are derived. Finally, by seeking the numerical solutions of the equation with the pseudospectral method, by virtue of waterfall plots, the effect of detuning parameter and dissipation on Rossby solitary waves generated by topography are discussed, and the equation is compared with KdV equation and BO equation. The results show that the detuning parameter \(\alpha\) plays an important role for the evolution features of solitary waves generated by topography, especially in the resonant case; a large amplitude nonstationary disturbance is generated in the forcing region. This condition may explain the blocking phenomenon which exists in the atmosphere and ocean and generated by topographic forcing. Cited in 17 Documents MSC: 76B25 Solitary waves for incompressible inviscid fluids 45K05 Integro-partial differential equations 35C08 Soliton solutions 35Q53 KdV equations (Korteweg-de Vries equations) 76U05 General theory of rotating fluids 86A05 Hydrology, hydrography, oceanography 86A10 Meteorology and atmospheric physics × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Philander, S. G. H., Forced oceanic waves, Reviews of Geophysics and Space Physics, 16, 1, 15-46 (1978) · doi:10.1029/RG016i001p00015 [2] Long, R. R., Solitary waves in the westerlies, Journal of the Atmospheric Sciences, 21, 197-200 (1964) · doi:10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2 [3] Benney, D. J., Long non-linear waves in fluid flows, Journal of Mathematical Physics, 45, 52-63 (1966) · Zbl 0151.42501 [4] Redekopp, L. G., On the theory of solitary Rossby waves, Journal of Fluid Mechanics, 82, 4, 725-745 (1977) · Zbl 0362.76055 · doi:10.1017/S0022112077000950 [5] Yano, J. I.; Tsujimura, Y. N., The domain of validity of the KdV-type solitary Rossby waves in the shallow water BETA-plane model, Dynamics of Atmospheres and Oceans, 11, 2 (1987) [6] Jian, S.; Lian-Gui, Y., Modified KdV equation for solitary rossby waves with \(β\) effect in barotropic fluids, Chinese Physics B, 18, 7, 2873-2877 (2009) · doi:10.1088/1674-1056/18/7/042 [7] Ono, H., Algebraic solitary waves in stratified fluids, 39, 4, 1082-1091 (1975) · Zbl 1334.76027 [8] Grimshaw, R., Slowly varying solitary waves in deep fluids, Proceedings of the Royal Society A, 376, 1765, 319-332 (1981) · Zbl 0457.76018 · doi:10.1098/rspa.1981.0094 [9] Dehai, L.; Liren, J., Algebraic rossby solitary wave and blocking in the atmosphere, Advances in Atmospheric Sciences, 5, 4, 445-454 (1988) · doi:10.1007/BF02656790 [10] Meng, L.; Lv, K. L., Dissipation and algebraic solitary long-waves excited by localized topography, Chinese Journal of Computational Physics, 19, 159-167 (2002) [11] Su, X. B.; Wei, G.; Dai, S. Q., Two-dimensional algebraic solitary wave and its vertical structure in stratified fluid, Applied Mathematics and Mechanics, 26, 10, 1255-1265 (2005) · Zbl 1170.76318 · doi:10.1007/BF03246230 [12] Kubota, T.; Ko, D. R. S.; Dobbs, L. D., Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth, Journal of Hydronautics, 12, 4, 157-165 (1978) · doi:10.2514/3.63127 [13] Zhou, Q. P., Second-order solitary waves in stratified fluids of finite depth, Science China Mathematics, 10, 924-934 (1984) [14] Ma, W. X., Complexiton solutions to the Korteweg-de Vries equation, Physics Letters A, 301, 1-2, 35-44 (2002) · Zbl 0997.35066 · doi:10.1016/S0375-9601(02)00971-4 [15] Ma, W.-X., Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation, Chaos, Solitons & Fractals, 19, 1, 163-170 (2004) · Zbl 1068.35138 · doi:10.1016/S0960-0779(03)00087-0 [16] Ma, W.-X.; You, Y., Solving the Korteweg-de Vries equation by its bilinear form: wronskian solutions, Transactions of the American Mathematical Society, 357, 5, 1753-1778 (2005) · Zbl 1062.37077 · doi:10.1090/S0002-9947-04-03726-2 [17] Xia, T. C.; Zhang, H. Q.; Yan, Z. Y., New explicit and exact travelling wave solutions for a class of nonlinear evolution equations, Applied Mathematics and Mechanics, 22, 7, 788-793 (2001) · Zbl 0982.35101 · doi:10.1023/A:1016359118468 [18] Wei, H.-Y.; Xia, T.-C., Self-consistent sources and conservation laws for nonlinear integrable couplings of the Li soliton hierarchy, Abstract and Applied Analysis, 2013 (2013) · Zbl 1364.37149 · doi:10.1155/2013/598570 [19] El-Ganaini, S. I. A., New exact solutions of some nonlinear systems of partial differential equations using the first integral method, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.35281 · doi:10.1155/2013/693076 [20] Luo, D. H., Nonlinear schrödinger equation in the rotational atmosphere and atmospheric blocking, Acta Meteor Sinica, 48, 265-274 (1990) [21] Polukhina, O. E.; Kurkin, A. A., Improved theory of nonlinear topographic Rossby waves, Oceanology, 45, 5, 607-616 (2005) [22] Yang, L. G.; Da, C. J.; Song, J.; Zhang, H. Q.; Yang, H. L.; Hou, Y. J., Rossby waves with linear topography in barotropic fluids, Chinese Journal of Oceanology and Limnology, 26, 3, 334-338 (2008) · doi:10.1007/s00343-008-0334-7 [23] Song, J.; Yang, L.-G., Force solitary Rossby waves with beta effect and topography effect in stratified flows, Acta Physica Sinica, 59, 5, 3309-3314 (2010) [24] Yang, H.-W.; Yin, B.-S.; Yang, D.-Z.; Xu, Z.-H., Forced solitary Rossby waves under the influence of slowly varying topography with time, Chinese Physics B, 20, 12 (2011) · doi:10.1088/1674-1056/20/12/120203 [25] Yang, H. W.; Shi, Y. L.; Yin, B. S.; Wang, Q. B., Forced ILW-Burgers equation as a model for Rossby solitary waves generated by topography in finite depth fluids, Journal of Applied Mathematics, 2012 (2012) · Zbl 1267.35080 · doi:10.1155/2012/491343 [26] Fornberg, B., A Practical Guide to Pseudospectral Methods (1996), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0844.65084 · doi:10.1017/CBO9780511626357 [27] Pedlosky, J., Geophysical Fluid Dynamics (1979), New York, NY, USA: Springer, New York, NY, USA · Zbl 0429.76001 [28] Ma, W. X.; Fuchssteiner, B., Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation, International Journal of Non-Linear Mechanics, 31, 3, 329-338 (1996) · Zbl 0863.35106 · doi:10.1016/0020-7462(95)00064-X [29] Asaad, M. G.; Ma, W.-X., Pfaffian solutions to a \((3 + 1)\)-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart, Applied Mathematics and Computation, 218, 9, 5524-5542 (2012) · Zbl 1241.35168 · doi:10.1016/j.amc.2011.11.042 [30] Zhang, B. G., Analytical and multishaped solitary wave solutions for extended reduced ostrovsky equation, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.35321 · doi:10.1155/2013/670847 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.