×

Nonlinear analysis of return time series model by oriented percolation dynamic system. (English) Zbl 1420.91552

Summary: Fluctuation dynamics of financial price changes is developed and investigated by oriented percolation system; oriented percolation is percolation with a special direction along which the activity can only propagate one way but not the other. Then, nonlinear behaviors of distribution and leverage effect of return time series are studied for the proposed model and the real stock market by comparison. We also investigate the scaling behaviors of return intervals. And a scaling function of exponential parameter is introduced to analyze fluctuation behaviors of return intervals. The empirical research exhibits that, for proper parameters, the simulation data of the model can fit the real markets to a certain extent.

MSC:

91G99 Actuarial science and mathematical finance
62P05 Applications of statistics to actuarial sciences and financial mathematics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

References:

[1] Black, F., Studies of stock price volatility changes, Proceedings of the Meetings of the American Statistical Association, Business and Economical Statistics Section
[2] Bouchaud, J. P.; Matacz, A.; Potters, M., Leverage effect in financial markets: the retarded volatility model, Physical Review Letters, 87, 22 (2001)
[3] Bouchaud, J. P.; Potters, M., Theory of Financial Risks: From Statistical Physics to Risk Management (2000), Cambridge University Press
[4] Campbell, J. Y.; Hentschel, L., No news is good news: an asymmetric model of changing volatility in stock returns, Journal of Financial Economics, 31, 3, 281-318 (1992)
[5] Campbell, J. Y.; Lo, A. W.; McKinley, A. C., The Econometrics of Financial Markets (1997), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 0927.62113
[6] Cont, R.; Bouchaud, J.-P., Herd behavior and aggregate fluctuations in financial markets, Macroeconomic Dynamics, 4, 2, 170-196 (2000) · Zbl 1060.91506
[7] Ding, Z.; Granger, C. W. J.; Engle, R. F., A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, 1, 83-106 (1993) · doi:10.1016/0927-5398(93)90006-D
[8] Grau-Carles, P., Long-range power-law correlations in stock returns, Physica A, 299, 3-4, 521-527 (2001) · Zbl 0972.91055 · doi:10.1016/S0378-4371(01)00248-5
[9] Guo, Y. L.; Wang, J., Simulation and statistical analysis of market return fluctuation by Zipf method, Mathematical Problems in Engineering, 2011 (2011) · doi:10.1155/2011/253523
[10] Haugen, R. A.; Talmor, E.; Torous, W. N., The effect of volatility changes on the level of stock prices and expected future returns, The Journal of Finance, 46, 3, 985-1007 (1991) · doi:10.1111/j.1540-6261.1991.tb03774.x
[11] Liao, Z.; Wang, J., Forecasting model of global stock index by stochastic time effective neural network, Expert Systems with Applications, 37, 1, 834-841 (2010) · doi:10.1016/j.eswa.2009.05.086
[12] Sabatelli, L.; Keating, S.; Dudley, J.; Richmond, P., Waiting time distributions in financial markets, The European Physical Journal B, 27, 2, 273-275 (2002) · doi:10.1140/epjb/e20020151
[13] Stanley, H. E.; Andrade, J. S.; Havlin, S.; Makse, H. A.; Suki, B., Percolation phenomena: a broad-brush introduction with some recent applications to porous media, liquid water, and city growth, Physica A, 266, 1-4, 5-16 (1999) · doi:10.1016/S0378-4371(99)00029-1
[14] Stauffer, D.; Aharony, A., Introduction to Percolation Theory (2001), London, UK: Taylor & Francis, London, UK
[15] Stauffer, D.; Penna, T. J. P., Crossover in the Cont-Bouchaud percolation model for market fluctuations, Physica A, 256, 1-2, 284-290 (1998)
[16] Wang, F.; Wang, J., Statistical analysis and forecasting of return interval for SSE and model by lattice percolation system and neural network, Computers & Industrial Engineering, 62, 1, 198-205 (2012) · doi:10.1016/j.cie.2011.09.007
[17] Wang, J.; Wang, Q. Y.; Shao, J. G., Fluctuations of stock price model by statistical physics systems, Mathematical and Computer Modelling, 51, 5-6, 431-440 (2010) · Zbl 1190.91117 · doi:10.1016/j.mcm.2009.12.003
[18] Wang, T. S.; Wang, J.; Fan, B., Statistical analysis by statistical physics model for the stock markets, International Journal of Modern Physics C, 20, 10, 1547-1562 (2009) · Zbl 1186.91235 · doi:10.1142/S012918310901459X
[19] Wang, X.; Wang, J., Statistical behavior of a financial model by lattice fractal Sierpinski carpet percolation, Journal of Applied Mathematics, 2012 (2012) · doi:10.1155/2012/735068
[20] Xiao, D.; Wang, J., Modelling stock price dynamics by continuum percolation system and relevant complex systems analysis, Physica A, 391, 20, 4827-4838 (2012) · doi:10.1016/j.physa.2012.05.024
[21] Yu, Y.; Wang, J., Lattice-oriented percolation system applied to volatility behavior of stock market, Journal of Applied Statistics, 39, 4, 785-797 (2012) · Zbl 1514.62217 · doi:10.1080/02664763.2011.620081
[22] Zhang, J. H.; Wang, J.; Shao, J., Finite-range contact process on the market return intervals distributions, Advances in Complex Systems, 13, 5, 643-657 (2010) · Zbl 1201.91153 · doi:10.1142/S0219525910002797
[23] Gaylord, R.; Wellin, P., Computer Simulations with Mathematica: Explorations in the Physical, Biological and Social Science (1995), New York, NY, USA: Springer, New York, NY, USA · Zbl 0831.65005
[24] Ilinski, K., Physics of Finance: Gauge Modeling in Non-Equilibrium Pricing (2001), New York, NY, USA: John Wiley, New York, NY, USA
[25] Mantegna, R. N.; Stanley, H. E., An Introduction to Econophysics (1999), Cambridge, UK: Cambridge University Press, Cambridge, UK
[26] Durrett, R., Lecture Notes on Particle Systems and Percolation (1988), California, Calif, USA: Wadsworth & Brooks, California, Calif, USA · Zbl 0659.60129
[27] Durrett, R., Oriented percolation in two dimensions, The Annals of Probability, 12, 4, 999-1040 (1984) · Zbl 0567.60095
[28] Grimmett, G., Percolation (1999), Berlin, Germany: Springer, Berlin, Germany · Zbl 0926.60004
[29] Liggett, T. M., Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (1999), New York, NY, USA: Springer, New York, NY, USA · Zbl 0949.60006
[30] Wang, J.; Shao, J. G.; Wang, B. T., Analysis of two-layered random interfaces for two dimensional Widom-Rowlinson’s model, Abstract and Applied Analysis, 2011 (2011) · Zbl 1375.82035 · doi:10.1155/2011/858725
[31] Wang, F.; Yamasaki, K.; Havlin, S.; Stanley, H. E., Scaling and memory of intraday volatility return intervals in stock markets, Physical Review E, 73, 2 (2006) · doi:10.1103/PhysRevE.73.026117
[32] Lamberton, D.; Lapeyre, B., Introduction to Stochastic Calculus Applied to Finance (2000), London, UK: Chapman and Hall/CRC, London, UK · Zbl 0898.60002
[33] Ross, S. M., An Introduction to Mathematical Finance (1999), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0944.91024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.