×

Sliding intermittent control for BAM neural networks with delays. (English) Zbl 1470.93133

Summary: This paper addresses the exponential stability problem for a class of delayed bidirectional associative memory (BAM) neural networks with delays. A sliding intermittent controller which takes the advantages of the periodically intermittent control idea and the impulsive control scheme is proposed and employed to the delayed BAM system. With the adjustable parameter taking different particular values, such a sliding intermittent control method can comprise several kinds of control schemes as special cases, such as the continuous feedback control, the impulsive control, the periodically intermittent control, and the semi-impulsive control. By using analysis techniques and the Lyapunov function methods, some sufficient criteria are derived for the closed-loop delayed BAM neural networks to be globally exponentially stable. Finally, two illustrative examples are given to show the effectiveness of the proposed control scheme and the obtained theoretical results.

MSC:

93D20 Asymptotic stability in control theory
34K20 Stability theory of functional-differential equations
34K45 Functional-differential equations with impulses
93C23 Control/observation systems governed by functional-differential equations
93E10 Estimation and detection in stochastic control theory

References:

[1] Kosko, B., Bidirectional associative memories, IEEE Transactions on Systems, Man, and Cybernetics, 18, 1, 49-60 (1988) · doi:10.1109/21.87054
[2] Rao, V. S. H.; Phaneendra, B. R. M., Global dynamics of bidirectional associative memory neural networks involving transmission delays and dead zones, Neural Networks, 12, 3, 455-465 (1999) · doi:10.1016/S0893-6080(98)00134-8
[3] Cao, J.; Liang, J.; Lam, J., Exponential stability of high-order bidirectional associative memory neural networks with time delays, Physica D, 199, 3-4, 425-436 (2004) · Zbl 1071.93048 · doi:10.1016/j.physd.2004.09.012
[4] Liu, Y.; Wang, Z.; Liang, J.; Liu, X., Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays, IEEE Transactions on Cybernetics, 43, 1, 102-114 (2012)
[5] Liang, J.; Wang, Z.; Shen, B.; Liu, X., Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays, ACM Transactions on Sensor Networks, 9, 1, article 4 (2012)
[6] Ding, D.; Wang, Z.; Dong, H.; Shu, H., Distributed \(H_\infty\) state estimation with stochastic parameters and nonlinearities through sensor networks: the finite-horizon case, Automatica, 48, 8, 1575-1585 (2012) · Zbl 1267.93167 · doi:10.1016/j.automatica.2012.05.070
[7] Xiao, M.; Zheng, W. X.; Cao, J., Hopf bifurcation of an \((n + 1)\)-neuron bidirectional associative memory neural network model with delays, IEEE Transactions on Neural Networks and Learning Systems, 24, 1, 118-132 (2013)
[8] Gopalsamy, K.; He, X.-Z., Delay-independent stability in bidirectional associative memory networks, IEEE Transactions on Neural Networks, 5, 6, 998-1002 (1994) · doi:10.1109/72.329700
[9] Arik, S., Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays, IEEE Transactions on Neural Networks, 16, 3, 580-586 (2005) · doi:10.1109/TNN.2005.844910
[10] Liang, J.; Cao, J., Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays, Chaos, Solitons & Fractals, 22, 4, 773-785 (2004) · Zbl 1062.68102 · doi:10.1016/j.chaos.2004.03.004
[11] Cao, J.; Song, Q., Stability in Cohen-Grossberg-type bidirectional associative memory neural networks with time-varying delays, Nonlinearity, 19, 7, 1601-1617 (2006) · Zbl 1118.37038 · doi:10.1088/0951-7715/19/7/008
[12] Lunze, J.; Lehmann, D., A state-feedback approach to event-based control, Automatica, 46, 1, 211-215 (2010) · Zbl 1213.93063 · doi:10.1016/j.automatica.2009.10.035
[13] Batista, C. A. S.; Lopes, S. R.; Viana, R. L.; Batista, A. M., Delayed feedback control of bursting synchronization in a scale-free neuronal network, Neural Networks, 23, 1, 114-124 (2010) · doi:10.1016/j.neunet.2009.08.005
[14] Lu, J.; Cao, J., Adaptive synchronization in tree-like dynamical networks, Nonlinear Analysis. Real World Applications, 8, 4, 1252-1260 (2007) · Zbl 1125.34031 · doi:10.1016/j.nonrwa.2006.07.010
[15] Liang, J.; Wang, Z.; Liu, X., On passivity and passification of stochastic fuzzy systems with delays: the discrete-time case, IEEE Transactions on Systems, Man, and Cybernetics B, 40, 3, 964-969 (2010) · doi:10.1109/TSMCB.2009.2033142
[16] Shen, B.; Wang, Z.; Liu, X., Sampled-data synchronization control of dynamical networks with stochastic sampling, IEEE Transactions on Automatic Control, 57, 10, 2644-2650 (2012) · Zbl 1369.93047 · doi:10.1109/TAC.2012.2190179
[17] Wu, L.; Shi, P.; Gao, H., State estimation and sliding-mode control of Markovian jump singular systems, IEEE Transactions on Automatic Control, 55, 5, 1213-1219 (2010) · Zbl 1368.93696 · doi:10.1109/TAC.2010.2042234
[18] Hu, J.; Wang, Z.; Gao, H.; Stergioulas, L. K., Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements, Automatica, 48, 9, 2007-2015 (2012) · Zbl 1257.93099 · doi:10.1016/j.automatica.2012.03.027
[19] Wei, G.; Wang, Z.; Shen, B., Probability-dependent gain-scheduled control for discrete stochastic delayed systems with randomly occurring nonlinearities, International Journal of Robust and Nonlinear Control, 23, 7, 815-826 (2012) · Zbl 1273.93149 · doi:10.1002/rnc.2788
[20] Pan, L.; Cao, J., Exponential stability of impulsive stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 382, 2, 672-685 (2011) · Zbl 1222.60043 · doi:10.1016/j.jmaa.2011.04.084
[21] Lu, J.; Ho, D. W. C.; Cao, J., A unified synchronization criterion for impulsive dynamical networks, Automatica, 46, 7, 1215-1221 (2010) · Zbl 1194.93090 · doi:10.1016/j.automatica.2010.04.005
[22] Li, C.; Feng, G.; Liao, X., Stabilization of nonlinear systems via periodically intermittent control, IEEE Transactions on Circuits and Systems II, 54, 11, 1019-1023 (2007) · doi:10.1109/TCSII.2007.903205
[23] Xia, W.; Cao, J., Pinning synchronization of delayed dynamical networks via periodically intermittent control, Chaos, 19, 1 (2009) · Zbl 1311.93061 · doi:10.1063/1.3071933
[24] Goshi, D. S.; Leong, K. M. K. H.; Itoh, T., A secure high-speed retrodirective communication link, IEEE Transactions on Microwave Theory and Techniques, 53, 11, 3548-3556 (2005) · doi:10.1109/TMTT.2005.857107
[25] Ho, D. W. C.; Liang, J.; Lam, J., Global exponential stability of impulsive high-order BAM neural networks with time-varying delays, Neural Networks, 19, 10, 1581-1590 (2006) · Zbl 1178.68417 · doi:10.1016/j.neunet.2006.02.006
[26] Gan, Q., Exponential synchronization of stochastic Cohen-Grossberg neural networks with mixed time-varying delays and reaction-diffusion via periodically intermittent control, Neural Networks, 31, 12-21 (2012) · Zbl 1245.93125 · doi:10.1016/j.neunet.2012.02.039
[27] Mohamad, S., Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks, Physica D, 159, 3-4, 233-251 (2001) · Zbl 0984.92502 · doi:10.1016/S0167-2789(01)00344-X
[28] Samidurai, R.; Sakthivel, R.; Anthoni, S. M., Global asymptotic stability of BAM neural networks with mixed delays and impulses, Applied Mathematics and Computation, 212, 1, 113-119 (2009) · Zbl 1173.34346 · doi:10.1016/j.amc.2009.02.002
[29] Li, Y.; Wang, C., Existence and global exponential stability of equilibrium for discrete-time fuzzy BAM neural networks with variable delays and impulses, Fuzzy Sets and Systems, 217, 62-79 (2013) · Zbl 1285.93078
[30] Halanay, A., Differential Equations: Stability, Oscillations, Time Lags (1966), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0144.08701
[31] Pan, L.; Cao, J., Anti-periodic solution for delayed cellular neural networks with impulsive effects, Nonlinear Analysis. Real World Applications, 12, 6, 3014-3027 (2011) · Zbl 1231.34121 · doi:10.1016/j.nonrwa.2011.05.002
[32] Li, Y.-T.; Yang, C.-B., Global exponential stability analysis on impulsive BAM neural networks with distributed delays, Journal of Mathematical Analysis and Applications, 324, 2, 1125-1139 (2006) · Zbl 1102.68117 · doi:10.1016/j.jmaa.2006.01.016
[33] Lakshmikantham, V.; Baĭnov, D. D.; Simeonov, P. S., Theory of impulsive differential equations. Theory of impulsive differential equations, Series in Modern Applied Mathematics, 6 (1989), Teaneck, NJ, USA: World Scientific Publishing Company, Teaneck, NJ, USA · Zbl 0719.34002
[34] Pan, L.-J.; Wang, G.-Q.; Cheng, S. S., Oscillation of even order nonlinear differential equations with impulses, Funkcialaj Ekvacioj. Serio Internacia, 50, 1, 117-131 (2007) · Zbl 1157.34026 · doi:10.1619/fesi.50.117
[35] Liu, X.; Chen, T., Cluster synchronization in directed networks via intermittent pinning control, IEEE Transactions on Neural Networks, 22, 7, 1009-1020 (2011) · doi:10.1109/TNN.2011.2139224
[36] Dong, H.; Wang, Z.; Gao, H., Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities, IEEE Transactions on Circuits and Systems I, 59, 10, 2354-2362 (2012) · Zbl 1468.94903 · doi:10.1109/TCSI.2012.2185330
[37] Hu, J.; Wang, Z.; Shen, B.; Gao, H., Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays, IEEE Transactions on Signal Processing, 61, 5, 1230-1238 (2013) · Zbl 1393.94261
[38] Shen, B.; Ding, S. X.; Wang, Z., Finite-horizon \(H_\infty\) fault estimation for linear discrete time-varying systems with delayed measurements, Automatica, 49, 1, 293-296 (2013) · Zbl 1257.93093 · doi:10.1016/j.automatica.2012.09.003
[39] Dong, H.; Wang, Z.; Lam, J.; Gao, H., Fuzzy-model-based robust fault detection with stochastic mixed time delays and successive packet dropouts, IEEE Transactions on Systems, Man, and Cybernetics B, 42, 2, 365-376 (2012) · doi:10.1109/TSMCB.2011.2163797
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.