×

Implicit and explicit iterative methods for systems of variational inequalities and zeros of accretive operators. (English) Zbl 1432.47002

Summary: Based on Korpelevich’s extragradient method, hybrid steepest-descent method, and viscosity approximation method, we propose implicit and explicit iterative schemes for computing a common element of the solution set of a system of variational inequalities and the set of zeros of an accretive operator, which is also a unique solution of a variational inequality. Under suitable assumptions, we study the strong convergence of the sequences generated by the proposed algorithms. The results of this paper improve and extend several known results in the literature.

MSC:

47J25 Iterative procedures involving nonlinear operators
49J40 Variational inequalities
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Takahashi, Y.; Hashimoto, K.; Kato, M., On sharp uniform convexity, smoothness, and strong type, cotype inequalities, Journal of Nonlinear and Convex Analysis, 3, 2, 267-281 (2002) · Zbl 1030.46012
[2] Ansari, Q. H., Topics in Nonlinear Analysis and Optimization (2012), Delhi, India: World Education, Delhi, India
[3] Goebel, K.; Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, 83 (1984), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0537.46001
[4] Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Analysis. Theory, Methods & Applications A, 16, 12, 1127-1138 (1991) · Zbl 0757.46033 · doi:10.1016/0362-546X(91)90200-K
[5] Kamimura, S.; Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAM Journal on Optimization, 13, 3, 938-945 (2002) · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[6] Bruck, R. E., Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Transactions of the American Mathematical Society, 179, 251-262 (1973) · Zbl 0265.47043 · doi:10.1090/S0002-9947-1973-0324491-8
[7] Deimling, K., Zeros of accretive operators, Manuscripta Mathematica, 13, 365-374 (1974) · Zbl 0288.47047 · doi:10.1007/BF01171148
[8] Iiduka, H.; Takahashi, W., Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Analysis. Theory, Methods & Applications A, 61, 3, 341-350 (2005) · Zbl 1093.47058 · doi:10.1016/j.na.2003.07.023
[9] Takahashi, W.; Toyoda, M., Weak convergence theorems for nonexpansive mappings and monotone mappings, Journal of Optimization Theory and Applications, 118, 2, 417-428 (2003) · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[10] Cai, G.; Bu, S., Approximation of common fixed points of a countable family of continuous pseudocontractions in a uniformly smooth Banach space, Applied Mathematics Letters, 24, 12, 1998-2004 (2011) · Zbl 1231.65098 · doi:10.1016/j.aml.2011.05.032
[11] Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M., Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Analysis. Theory, Methods & Applications A, 67, 8, 2350-2360 (2007) · Zbl 1130.47045 · doi:10.1016/j.na.2006.08.032
[12] Ceng, L.-C.; Khan, A. R.; Ansari, Q. H.; Yao, J.-C., Strong convergence of composite iterative schemes for zeros of \(m\)-accretive operators in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications A, 70, 5, 1830-1840 (2009) · Zbl 1226.47069 · doi:10.1016/j.na.2008.02.083
[13] Jung, J. S., Convergence of composite iterative methods for finding zeros of accretive operators, Nonlinear Analysis. Theory, Methods & Applications A, 71, 5-6, 1736-1746 (2009) · Zbl 1219.47118 · doi:10.1016/j.na.2009.01.010
[14] Reich, S., Weak convergence theorems for nonexpansive mappings in Banach spaces, Journal of Mathematical Analysis and Applications, 67, 2, 274-276 (1979) · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6
[15] Cai, G.; Bu, S., Convergence analysis for variational inequality problems and fixed point problems in 2-uniformly smooth and uniformly convex Banach spaces, Mathematical and Computer Modelling, 55, 3-4, 538-546 (2012) · Zbl 1255.49015 · doi:10.1016/j.mcm.2011.08.031
[16] Ceng, L.-C.; Wang, C.-Y.; Yao, J.-C., Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Mathematical Methods of Operations Research, 67, 3, 375-390 (2008) · Zbl 1147.49007 · doi:10.1007/s00186-007-0207-4
[17] Ansari, Q. H.; Yao, J.-C., Systems of generalized variational inequalities and their applications, Applicable Analysis, 76, 3-4, 203-217 (2000) · Zbl 1018.49005 · doi:10.1080/00036810008840877
[18] Aubin, J.-P., Mathematical Methods of Game and Economic Theory, 7 (1979), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0452.90093
[19] Facchinei, F.; Pang, J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, 1-2 (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1062.90002
[20] Korpelevič, G. M., An extragradient method for finding saddle points and for other problems, Èkonomika i Matematicheskie Metody, 12, 4, 747-756 (1976) · Zbl 0342.90044
[21] Ceng, L. C.; Ansari, Q. H.; Wong, N. C.; Yao, J. C., An extragradient-like approximation method for variational inequalities and fixed point problems, Fixed Point Theory and Applications, 2011, article 22 (2011) · Zbl 1390.47016
[22] Ceng, L.-C.; Ansari, Q. H.; Wong, M. M.; Yao, J.-C., Mann type hybrid extragradient method for variational inequalities, variational inclusions and fixed point problems, Fixed Point Theory, 13, 2, 403-422 (2012) · Zbl 1280.49015
[23] Ceng, L.-C.; Ansari, Q. H.; Yao, J.-C., Relaxed extragradient iterative methods for variational inequalities, Applied Mathematics and Computation, 218, 3, 1112-1123 (2011) · Zbl 1229.65109 · doi:10.1016/j.amc.2011.01.061
[24] Ansari, Q. H.; Lalitha, C. S.; Mehta, M., Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization (2014), London, UK: CRC Press, London, UK · Zbl 1276.49001
[25] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, 88 (1980), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0457.35001
[26] Aoyama, K.; Iiduka, H.; Takahashi, W., Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory and Applications, 2006 (2006) · Zbl 1128.47056 · doi:10.1155/FPTA/2006/35390
[27] Karapınar, E.; Taş, K., Generalized \((C)\)-conditions and related fixed point theorems, Computers & Mathematics with Applications, 61, 11, 3370-3380 (2011) · Zbl 1223.47063 · doi:10.1016/j.camwa.2011.04.035
[28] Yao, Y.; Liou, Y.-C.; Chen, R., Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications A, 67, 12, 3311-3317 (2007) · Zbl 1129.47059 · doi:10.1016/j.na.2006.10.013
[29] Yao, Y.; Liou, Y.-C.; Kang, S. M.; Yu, Y., Algorithms with strong convergence for a system of nonlinear variational inequalities in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications A, 74, 17, 6024-6034 (2011) · Zbl 1393.47042 · doi:10.1016/j.na.2011.05.079
[30] Takahashi, W., Nonlinear Functional Analysis—Fixed Point Theory and Its Applications (2000), Yokohama, Japan: Yokohama Publishers, Yokohama, Japan · Zbl 0997.47002
[31] Goebel, K.; Kirk, W. A., Topics in Metric Fixed Point Theory, 28 (1990), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0708.47031 · doi:10.1017/CBO9780511526152
[32] Gossez, J.-P.; Lami Dozo, E., Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific Journal of Mathematics, 40, 565-573 (1972) · Zbl 0223.47025 · doi:10.2140/pjm.1972.40.565
[33] van Dulst, D., Equivalent norms and the fixed point property for nonexpansive mappings, The Journal of the London Mathematical Society, 25, 1, 139-144 (1982) · Zbl 0453.46017 · doi:10.1112/jlms/s2-25.1.139
[34] Xu, H.-K., Iterative algorithms for nonlinear operators, Journal of the London Mathematical Society, 66, 1, 240-256 (2002) · Zbl 1013.47032 · doi:10.1112/S0024610702003332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.