×

Large time behavior of the Vlasov-Poisson-Boltzmann system. (English) Zbl 1432.35200

Summary: The motion of dilute charged particles can be modeled by the Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of the VPB system tends to global Maxwellian state in a rate \(O \left(t^{- \infty}\right)\), by using a method developed for the Boltzmann equation without force in the work of L. Desvillettes and C. Villani [Invent. Math. 159, No. 2, 245–316 (2005; Zbl 1162.82316)]. The improvement of the present paper is the removal of a condition on the parameter \(\lambda\) as in the work of L. Li [J. Differ. Equations 244, No. 6, 1467–1501 (2008; Zbl 1151.35077)].

MSC:

35Q83 Vlasov equations
82D10 Statistical mechanics of plasmas
35B40 Asymptotic behavior of solutions to PDEs
35Q20 Boltzmann equations
82C40 Kinetic theory of gases in time-dependent statistical mechanics

References:

[1] Ukai, S., On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proceedings of the Japan Academy, 50, 179-184 (1974) · Zbl 0312.35061 · doi:10.3792/pja/1195519027
[2] Caflisch, R. E., The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Communications in Mathematical Physics, 74, 1, 71-95 (1980) · Zbl 0434.76065 · doi:10.1007/BF01197579
[3] Strain, R. M.; Guo, Y., Exponential decay for soft potentials near Maxwellian, Archive for Rational Mechanics and Analysis, 187, 2, 287-339 (2008) · Zbl 1130.76069 · doi:10.1007/s00205-007-0067-3
[4] Desvillettes, L.; Villani, C., On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Inventiones Mathematicae, 159, 2, 245-316 (2005) · Zbl 1162.82316 · doi:10.1007/s00222-004-0389-9
[5] Li, L., On the trend to equilibrium for the Vlasov-Poisson-Boltzmann equation, Journal of Differential Equations, 244, 6, 1467-1501 (2008) · Zbl 1151.35077 · doi:10.1016/j.jde.2007.10.029
[6] Guo, Y., The Vlasov-Poisson-Boltzmann system near Maxwellians, Communications on Pure and Applied Mathematics, 55, 9, 1104-1135 (2002) · Zbl 1027.82035 · doi:10.1002/cpa.10040
[7] Strain, R. M., The Vlasov-Maxwell-Boltzmann system in the whole space, Communications in Mathematical Physics, 268, 2, 543-567 (2006) · Zbl 1129.35022 · doi:10.1007/s00220-006-0109-y
[8] Yang, T.; Yu, H. J.; Zhao, H. J., Cauchy problem for the Vlasov-Poisson-Boltzmann system, Archive for Rational Mechanics and Analysis, 182, 3, 415-470 (2006) · Zbl 1104.76086 · doi:10.1007/s00205-006-0009-5
[9] Yang, T.; Zhao, H. J., Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Communications in Mathematical Physics, 268, 3, 569-605 (2006) · Zbl 1129.35023 · doi:10.1007/s00220-006-0103-4
[10] Villani, C., Cercignani’s conjecture is sometimes true and always almost true, Communications in Mathematical Physics, 234, 3, 455-490 (2003) · Zbl 1041.82018 · doi:10.1007/s00220-002-0777-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.