×

Exact solution for long-term size exclusion suspension-colloidal transport in porous media. (English) Zbl 1470.76099

Summary: Long-term deep bed filtration in porous media with size exclusion particle capture mechanism is studied. For monodispersed suspension and transport in porous media with distributed pore sizes, the microstochastic model allows for upscaling and the exact solution is derived for the obtained macroscale equation system. Results show that transient pore size distribution and nonlinear relation between the filtration coefficient and captured particle concentration during suspension filtration and retention are the main features of long-term deep bed filtration, which generalises the classical deep bed filtration model and its latter modifications. Furthermore, the exact solution demonstrates earlier breakthrough and lower breakthrough concentration for larger particles. Among all the pores with different sizes, the ones with intermediate sizes (between the minimum pore size and the particle size) vanish first. Total concentration of all the pores smaller than the particles turns to zero asymptotically when time tends to infinity, which corresponds to complete plugging of smaller pores.

MSC:

76S05 Flows in porous media; filtration; seepage

References:

[1] Barenblatt, G. I.; Entov, V. M.; Ryzhik, V. M., Theory of Fluid Flows Through Natural Rocks (1990), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 0769.76001
[2] Bedrikovetsky, P., Mathematical Theory of Oil and Gas Recovery: With Applications to Ex-USSR Oil and Gas Fields (1993), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands
[3] Khilar, K. C.; Fogler, H. S., Migrations of Fines in Porous Media (1998), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands
[4] Civan, F., Reservoir Formation Damage: Fundamentals, Modeling, Assessment, and Mitigation (2007), Amsterdam, The Netherlands: Gulf Professional, Amsterdam, The Netherlands
[5] Schembre, J. M.; Kovscek, A. R., Mechanism of formation damage at elevated temperature, Journal of Energy Resources Technology, Transactions of the ASME, 127, 3, 171-180 (2005) · doi:10.1115/1.1924398
[6] Civan, F., Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport, Transport in Porous Media, 85, 1, 233-258 (2010) · doi:10.1007/s11242-010-9557-0
[7] You, Z.; Badalyan, A.; Bedrikovetsky, P., Size-exclusion colloidal transport in porous media-stochastic modeling and experimental study, SPE Journal, 18, 620-633 (2013)
[8] Mays, D. C.; Hunt, J. R., Hydrodynamic aspects of particle clogging in porous media, Environmental Science and Technology, 39, 2, 577-584 (2005) · doi:10.1021/es049367k
[9] Mays, D. C.; Hunt, J. R., Hydrodynamic and chemical factors in clogging by montmorillonite in porous media, Environmental Science and Technology, 41, 16, 5666-5671 (2007) · doi:10.1021/es062009s
[10] Tien, C.; Ramarao, B. V., Granular Filtration of Aerosols and Hydrosols (2007), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands
[11] Baveye, P.; Vandevivere, P.; Hoyle, B. L.; DeLeo, P. C.; Sanchez De Lozada, D., Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials, Critical Reviews in Environmental Science and Technology, 28, 2, 123-191 (1998) · doi:10.1080/10643389891254197
[12] Vidali, M., Bioremediation. An overview, Pure and Applied Chemistry, 73, 7, 1163-1172 (2001)
[13] Packman, A. I.; MacKay, J. S., Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution, Water Resources Research, 39, 4, ESG41-ESG49 (2003)
[14] Yao, K.-M.; Habibian, M. T.; O’Melia, C. R., Water and waste water filtration: concepts and applications, Environmental Science and Technology, 5, 11, 1105-1112 (1971)
[15] Elimelech, M.; Jia, X.; Gregory, J.; Williams, R., Particle Deposition and Aggregation: Measurement, Modelling and Simulation (1995), Oxford, UK: Butterworth-Heinemann, Oxford, UK
[16] Weiss, W. J.; Bouwer, E. J.; Aboytes, R.; LeChevallier, M. W.; O’Melia, C. R.; Le, B. T.; Schwab, K. J., Riverbank filtration for control of microorganisms: results from field monitoring, Water Research, 39, 10, 1990-2001 (2005) · doi:10.1016/j.watres.2005.03.018
[17] Tufenkji, N.; Dixon, D. R.; Considine, R.; Drummond, C. J., Multi-scale Cryptosporidium/sand interactions in water treatment, Water Research, 40, 18, 3315-3331 (2006) · doi:10.1016/j.watres.2006.07.036
[18] Shin, J. Y.; Spinette, R. F.; O’Melia, C. R., Stoichiometry of coagulation revisited, Environmental Science and Technology, 42, 7, 2582-2589 (2008) · doi:10.1021/es071536o
[19] Torkzaban, S.; Wan, J.; Tokunaga, T. K.; Bradford, S. A., Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand, Journal of Contaminant Hydrology, 136-137, 86-95 (2012)
[20] Bradford, S. A.; Torkzaban, S.; Shapiro, A., A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media, Langmuir, 29, 6944-6952 (2013)
[21] Herzig, J. P.; Leclerc, D. M.; Legoff, P., Flow of suspensions through porous media—application to deep filtration, Industrial and Engineering Chemistry, 62, 5, 8-35 (1970)
[22] McDowell-Boyer, L. M.; Hunt, J. R.; Sitar, N., Particle transport through porous media, Water Resources Research, 22, 13, 1901-1921 (1986)
[23] Ryan, J. N.; Elimelech, M., Colloid mobilization and transport in groundwater, Colloids and Surfaces A, 107, 1-56 (1996) · doi:10.1016/0927-7757(95)03384-X
[24] Schijven, J. F.; Hassanizadeh, S. M., Removal of viruses by soil passage: overview of modeling, processes, and parameters, Critical Reviews in Environmental Science and Technology, 30, 1, 49-127 (2000)
[25] Sen, T. K.; Khilar, K. C., Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media, Advances in Colloid and Interface Science, 119, 2-3, 71-96 (2006) · doi:10.1016/j.cis.2005.09.001
[26] Bradford, S. A.; Torkzaban, S., Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models, Vadose Zone Journal, 7, 2, 667-681 (2008) · doi:10.2136/vzj2007.0092
[27] Chang, J. S.; Vigneswaran, S.; Kandasamy, J. K.; Tsai, L. J., Effect of pore size and particle size distribution on granular bed filtration and microfiltration, Separation Science and Technology, 43, 7, 1771-1784 (2008) · doi:10.1080/01496390801974605
[28] Lin, D.; Tian, X.; Wu, F.; Xing, B., Fate and transport of engineered nanomaterials in the environment, Journal of Environmental Quality, 39, 6, 1896-1908 (2010) · doi:10.2134/jeq2009.0423
[29] Sen, T. K., Processes in pathogenic biocolloidal contaminants transport in saturated and unsaturated porous media: a review, Water, Air, and Soil Pollution, 216, 1-4, 239-256 (2011) · doi:10.1007/s11270-010-0531-9
[30] Payatakes, A. C.; Rajagopalan, R.; Tien, C., Application of porous media models to the study of deep bed filtration, The Canadian Journal of Chemical Engineering, 52, 722-731 (1974)
[31] Kuhnen, F.; Barmettler, K.; Bhattacharjee, S.; Elimelech, M.; Kretzschmar, R., Transport of iron oxide colloids in packed quartz sand media: monolayer and multilayer deposition, Journal of Colloid and Interface Science, 231, 1, 32-41 (2000) · doi:10.1006/jcis.2000.7097
[32] Bedrikovetsky, P., Upscaling of stochastic micro model for suspension transport in porous media, Transport in Porous Media, 75, 3, 335-369 (2008) · doi:10.1007/s11242-008-9228-6
[33] Shapiro, A. A.; Bedrikovetsky, P. G., Elliptic random-walk equation for suspension and tracer transport in porous media, Physica A, 387, 24, 5963-5978 (2008) · doi:10.1016/j.physa.2008.07.013
[34] Shapiro, A. A.; Bedrikovetsky, P. G., A stochastic theory for deep bed filtration accounting for dispersion and size distributions, Physica A, 389, 13, 2473-2494 (2010) · doi:10.1016/j.physa.2010.02.049
[35] Sharma, M. M.; Yortsos, Y. C., Transport of particulate suspensions in porous media: model formulation, AIChE Journal, 33, 10, 1636-1643 (1987)
[36] Sharma, M. M.; Yortsos, Y. C., Network model for deep bed filtration processes, AIChE Journal, 33, 10, 1644-1653 (1987)
[37] Sharma, M. M.; Yortsos, Y. C., Fines migration in porous media, AIChE Journal, 33, 10, 1654-1662 (1987)
[38] Santos, A.; Bedrikovetsky, P., A stochastic model for particulate suspension flow in porous media, Transport in Porous Media, 62, 1, 23-53 (2006) · doi:10.1007/s11242-005-5175-7
[39] Shapiro, A. A.; Bedrikovetsky, P. G.; Santos, A.; Medvedev, O. O., A stochastic model for filtration of particulate suspensions with incomplete pore plugging, Transport in Porous Media, 67, 1, 135-164 (2007) · doi:10.1007/s11242-006-0029-5
[40] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1987), Oxford, UK: Pergamon Press, Oxford, UK · Zbl 0655.76001
[41] Chalk, P.; Gooding, N.; Hutten, S.; You, Z.; Bedrikovetsky, P., Pore size distribution from challenge coreflood testing by colloidal flow, Chemical Engineering Research and Design, 90, 1, 63-77 (2012) · doi:10.1016/j.cherd.2011.08.018
[42] Pires, A. P.; Bedrikovetsky, P. G.; Polyanin, A. D.; Zaitzev, V. F., First-order hyperbolic systems of quasilinear equations: systems of conservation laws of gas dynamic type, Handbook of NonlInear Partial Differential Equations, 1607-1620 (2012), Boca Raton, Fla, USA: Chapman & Hall, Boca Raton, Fla, USA
[43] Selyakov, V. I.; Kadet, V. V., Percolation Models for Transport in Porous Media with Applications to Reservoir Engineering (1996), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands
[44] Yuan, H.; Shapiro, A.; You, Z.; Badalyan, A., Estimating filtration coefficients for straining from percolation and random walk theories, Chemical Engineering Journal, 210, 63-73 (2012) · doi:10.1016/j.cej.2012.08.029
[45] Yuan, H.; You, Z.; Shapiro, A.; Bedrikovetsky, P., Improved population balance model for straining-dominant deep bed filtration using network calculations, Chemical Engineering Journal, 226, 227-237 (2013) · doi:10.1016/j.cej.2013.04.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.