Fu, Mingyu; Jiao, Jianfang; Yin, Shen Robust coordinated formation for multiple surface vessels based on backstepping sliding mode control. (English) Zbl 1421.93038 Abstr. Appl. Anal. 2013, Article ID 681319, 10 p. (2013). Summary: We investigate the problem of coordinated formation control for multiple surface vessels in the presence of unknown external disturbances. In order to realize the leaderless coordinated formation and achieve the robustness against unknown external disturbances, a new robust coordinated formation control algorithm based on backstepping sliding mode control is proposed. The proposed coordinated control algorithm is achieved by defining a new switched function using the combination of position tracking error and cross-coupling error. Particularly, the cross-coupling error is defined using velocity tracking error and velocity synchronization error so as to be applicable for sliding mode controller design. Furthermore, the adaptive control law is proposed to estimate unknown disturbances for each vessel. The globally asymptotically stability is proved using the Lyapunov direct method. Finally, the effectiveness of the proposed coordinated formation control algorithm is demonstrated by corresponding simulations. Cited in 2 Documents MSC: 93B35 Sensitivity (robustness) 93B12 Variable structure systems 93D20 Asymptotic stability in control theory 93C95 Application models in control theory Keywords:robust coordinated formation; backstepping sliding mode control; surface vessels × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Zhang, L.; Gao, H.; Kaynak, O., Network-induced constraints in networked control system-a survey, IEEE Transactions on Industrial Informatics, 9, 1, 403-416 (2013) [2] Ren, W.; Beard, R. W.; Atkins, E. M., A survey of consensus problems in multi-agent coordination, Proceedings of the American Control Conference (ACC ’05) [3] Aguiar, A.; Almeida, J.; Bayat, M., Cooperative autonomous marine vehicle motion control in the scope of the eugrex project: theory and practice, Proceedings of the IEEE/MTS Conference on Oceans [4] Ihle, I.-A. F.; Jouffroy, J.; Fossen, T. I., Formation control of marine surface craft: a lagrangian approach, IEEE Journal of Oceanic Engineering, 31, 4, 922-934 (2006) · Zbl 1217.93123 · doi:10.1109/JOE.2006.880426 [5] Arrichiello, F.; Chiaverini, S.; Fossen, T. I., Formation control of underactuated surface vessels using the null-spaee-based behavioral control, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’06) · doi:10.1109/IROS.2006.282477 [6] Fahimi, F., Non-linear model predictive formation control for groups of autonomous surface vessels, International Journal of Control, 80, 8, 1248-1259 (2007) · Zbl 1133.93352 · doi:10.1080/00207170701280911 [7] Almeida, J.; Silvestre, C.; Pascoal, A. M., Cooperative control of multiple surface vessels with discrete-time periodic communications, International Journal of Robust and Nonlinear Control, 22, 4, 398-419 (2012) · Zbl 1261.93005 · doi:10.1002/rnc.1698 [8] Ihle, I.-A. F.; Arcak, M.; Fossen, T. I., Passivity-based designs for synchronized path-following, Automatica, 43, 9, 1508-1518 (2007) · Zbl 1128.93331 · doi:10.1016/j.automatica.2007.02.018 [9] Børhaug, E.; Pavlov, A.; Panteley, E.; Pettersen, K. Y., Straight line path following for formations of underactuated marine surface vessels, IEEE Transactions on Control Systems Technology, 19, 3, 493-506 (2011) · doi:10.1109/TCST.2010.2050889 [10] Ghommam, J.; Mnif, F., Coordinated path-following control for a group of underactuated surface vessels, IEEE Transactions on Industrial Electronics, 56, 10, 3951-3963 (2009) · doi:10.1109/TIE.2009.2028362 [11] Wang, Y.; Yan, W.; Li, J., Passivity-based formation control of autonomous underwater vehicles, IET Control Theory & Applications, 6, 4, 518-525 (2012) · doi:10.1049/iet-cta.2011.0354 [12] Thorvaldsen, C.; Skjetne, R., Formation control of fully-actuated marine vessels using group agreement protocols, Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference [13] Fu, M.; Jiao, J., A hybrid approach for coordinated formation control of multiple surface vessels, Mathematical Problems in Engineering, 2013 (2013) · doi:10.1155/2013/794284 [14] Gravagne, I. A.; Davis, J. M.; DaCunha, J. J., A unified approach to high-gain adaptive controllers, Abstract and Applied Analysis, 2009 (2009) · Zbl 1184.93100 · doi:10.1155/2009/198353 [15] Yin, S.; Ding, S.; Luo, H., Real-time implementtion of fault tolerant control system with performance optimization, IEEE Transactions on Industrial Electronics (2013) · doi:10.1109/TIE.2013.2273477 [16] Huang, J.; Li, H.; Chen, Y.; Xu, Q., Robust position control of PMSM using fractional-order sliding mode controller, Abstract and Applied Analysis, 2012 (2012) · Zbl 1256.93053 · doi:10.1155/2012/512703 [17] Zhang, L.; Boukas, E.-K., Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45, 2, 463-468 (2009) · Zbl 1158.93414 · doi:10.1016/j.automatica.2008.08.010 [18] Zhang, L.; Shi, P.; Boukas, E.-K.; Wang, C., \( \text{H}_\infty\) model reduction for uncertain switched linear discrete-time systems, Automatica, 44, 11, 2944-2949 (2008) · Zbl 1152.93321 · doi:10.1016/j.automatica.2008.03.025 [19] Tannuri, E. A.; Agostinho, A. C.; Morishita, H. M.; Moratelli, L., Dynamic positioning systems: an experimental analysis of sliding mode control, Control Engineering Practice, 18, 10, 1121-1132 (2010) · doi:10.1016/j.conengprac.2010.06.007 [20] Ashrafiuon, H.; Muske, K. R.; McNinch, L. C.; Soltan, R. A., Sliding-mode tracking control of surface vessels, IEEE Transactions on Industrial Electronics, 55, 11, 4004-4012 (2008) · doi:10.1109/TIE.2008.2005933 [21] Fahimi, F., Sliding-mode formation control for underactuated surface vessels, IEEE Transactions on Robotics, 23, 3, 617-622 (2007) · doi:10.1109/TRO.2007.898961 [22] Defoort, M.; Floquet, T.; Kökösy, A.; Perruquetti, W., Sliding-mode formation control for cooperative autonomous mobile robots, IEEE Transactions on Industrial Electronics, 55, 11, 3944-3953 (2008) · doi:10.1109/TIE.2008.2002717 [23] Xia, Y.; Zhu, Z.; Fu, M., Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory & Applications, 5, 1, 93-102 (2011) · doi:10.1049/iet-cta.2009.0341 [24] Zhao, D.; Zou, T., A finite-time approach to formation control of multiple mobile robots with terminal sliding mode, International Journal of Systems Science, 43, 11, 1998-2014 (2012) · Zbl 1305.93051 · doi:10.1080/00207721.2011.564323 [25] Zhao, D.; Zou, T.; Li, S.; Zhu, Q., Adaptive backstepping sliding mode control for leader-follower multi-agent systems, IET Control Theory & Applications, 6, 8, 1109-1117 (2012) · doi:10.1049/iet-cta.2011.0001 [26] Ren, W., Distributed leaderless consensus algorithms for networked Euler-Lagrange systems, International Journal of Control, 82, 11, 2137-2149 (2009) · Zbl 1175.93074 · doi:10.1080/00207170902948027 [27] Sun, D.; Wang, C.; Shang, W.; Feng, G., A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations, IEEE Transactions on Robotics, 25, 5, 1074-1086 (2009) · doi:10.1109/TRO.2009.2027384 [28] Khalil, H., Nonlinear Systems (2002), Upper Saddle River, NJ, USA: Prentice Hall, Upper Saddle River, NJ, USA · Zbl 1003.34002 [29] Fossen, T., Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (2002), Trondheim, Norway: Marine Cybernetics, Trondheim, Norway This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.