Kudriasov type univalence criteria for some integral operators. (English) Zbl 1470.30024

Summary: We consider some integral operators defined by analytic functions in the open unit disk and derive new univalence criteria for these operators, using Kudriasov condition for a function to be univalent.


30C55 General theory of univalent and multivalent functions of one complex variable
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI


[1] Pescar, V.; Breaz, V. D., The Univalence of Integral Operators (2008), Sofia, Bulgaria: Academic Publishing House, Sofia, Bulgaria
[2] Kudriasov, N. S., Onekotorîh priznakah odnolistnosti analiticeschih funktii, Matematiceskie Zametki, 13, 3, 359-366 (1973)
[3] Pascu, N. N., An improvement of Becker’s univalence criterion, Proceedings of the Commemorative Session Simon Stoilow
[4] Becker, J., Löwnersche differentialgleichung und quasikonform fortsetzbare schichte functionen, Journal für die Reine und Angewandte Mathematik, 255, 23-43 (1972) · Zbl 0239.30015
[5] Breaz, D.; Breaz, N.; Pescar, V., On the univalence of a certain integral operator, Acta Universitatis Apulensis, 26, 251-256 (2011) · Zbl 1274.30022
[6] Stanciu, L. F.; Breaz, D., Univalence criteria for two integral operators, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.30013
[7] Breaz, D.; Breaz, N., Univalence conditions for certain integral operators, Studia Universitatis Babeş-Bolyai, Mathematica, 47, 2, 9-15 (2002) · Zbl 1027.30046
[8] Pescar, V.; Owa, S., Univalence of certain integral operators, Journal of Approximation Theory and Applications, 2, 1, 11-16 (2006)
[9] Stanciu, L., The univalence conditions of some integral operators, Abstract and Applied Analysis, 2012 (2012) · Zbl 1267.30054
[10] Ularu, N.; Breaz, D., Univalence criterion and convexity for an integral operator, Applied Mathematics Letters, 25, 3, 658-661 (2012) · Zbl 1251.30029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.