×

On parametric Gevrey asymptotics for singularly perturbed partial differential equations with delays. (English) Zbl 1470.35127

Summary: We study a family of singularly perturbed \(q\)-difference-differential equations in the complex domain. We provide sectorial holomorphic solutions in the perturbation parameter \(\epsilon\). Moreover, we achieve the existence of a common formal power series in \(\epsilon\) which represents each actual solution and establish \(q\)-Gevrey estimates involved in this representation. The proof of the main result rests on a new version of the so-called Malgrange-Sibuya theorem regarding \(q\)-Gevrey asymptotics. A particular Dirichlet like series is studied on the way.

MSC:

35C10 Series solutions to PDEs
35C20 Asymptotic expansions of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Canalis-Durand, M.; Mozo-Fernández, J.; Schäfke, R., Monomial summability and doubly singular differential equations, Journal of Differential Equations, 233, 2, 485-511 (2007) · Zbl 1166.34334 · doi:10.1016/j.jde.2006.11.005
[2] Lastra, A.; Malek, S.; Sanz, J., On Gevrey solutions of threefold singular nonlinear partial differential equations, Journal of Differential Equations, 255, 10, 3205-3232 (2013) · Zbl 1320.35150 · doi:10.1016/j.jde.2013.07.031
[3] Malek, S., On the summability of formal solutions for doubly singular nonlinear partial differential equations, Journal of Dynamical and Control Systems, 18, 1, 45-82 (2012) · Zbl 1250.35062 · doi:10.1007/s10883-012-9134-7
[4] Malek, S., On singularly perturbed \(q\)-difference-differential equations with irregular singularity, Journal of Dynamical and Control Systems, 17, 2, 243-271 (2011) · Zbl 1219.35020 · doi:10.1007/s10883-011-9118-z
[5] Lastra, A.; Malek, S., On \(q\)-Gevrey asymptotics for singularly perturbed \(q\)-difference-differential problems with an irregular singularity, Abstract and Applied Analysis, 2012 (2012) · Zbl 1239.34104 · doi:10.1155/2012/860716
[6] Malek, S., Singularly perturbed small step size difference-differential nonlinear PDEs, Journal of Difference Equations (2013) · Zbl 1284.35041 · doi:10.1080/10236198.2013.813941
[7] Braaksma, B. L. J.; Faber, B. F.; Immink, G. K., Summation of formal solutions of a class of linear difference equations, Pacific Journal of Mathematics, 195, 1, 35-65 (2000) · Zbl 1008.39003 · doi:10.2140/pjm.2000.195.35
[8] Braaksma, B. L. J.; Faber, B. F., Multisummability for some classes of difference equations, Annales de l’Institut Fourier, 46, 1, 183-217 (1996) · Zbl 0837.39001 · doi:10.5802/aif.1511
[9] Di Vizio, L.; Ramis, J.-P.; Sauloy, J.; Zhang, C., Équations aux \(q\)-différences, Gazette des Mathématiciens, 96, 20-49 (2003) · Zbl 1063.39015
[10] Ramis, J.-P., About the growth of entire functions solutions of linear algebraic \(q\)-difference equations, Toulouse, 1, 1, 53-94 (1992) · Zbl 0796.39005 · doi:10.5802/afst.739
[11] Carr, J.; Dyson, J., The matrix functional differential equation \(y\)′\((x) = A y(\lambda x) + B y(x)\), Proceedings of the Royal Society of Edinburgh A, 75, 1, 5-22 (1975/1976) · Zbl 0355.34054
[12] Fox, L.; Mayers, D. F.; Ockendon, J. R.; Tayler, A. B., On a functional differential equation, Journal of the Institute of Mathematics and Its Applications, 8, 271-307 (1971) · Zbl 0251.34045 · doi:10.1093/imamat/8.3.271
[13] Iserles, A., On the generalized pantograph functional-differential equation, European Journal of Applied Mathematics, 4, 1, 1-38 (1993) · Zbl 0767.34054 · doi:10.1017/S0956792500000966
[14] Kato, T.; McLeod, J. B., The functional-differential equation \(y\)′\((x) = a y(\lambda x) + b y(x)\), Bulletin of the American Mathematical Society, 77, 891-937 (1971) · Zbl 0236.34064 · doi:10.1090/S0002-9904-1971-12805-7
[15] Čermák, J., On the differential equation with power coefficients and proportional delays, Tatra Mountains Mathematical Publications, 38, 57-69 (2007) · Zbl 1199.34409
[16] Derfel, G.; Vogl, F., On the asymptotics of solutions of a class of linear functional-differential equations, European Journal of Applied Mathematics, 7, 5, 511-518 (1996) · Zbl 0859.34049 · doi:10.1017/S0956792500002527
[17] Derfel, G.; Iserles, A., The pantograph equation in the complex plane, Journal of Mathematical Analysis and Applications, 213, 1, 117-132 (1997) · Zbl 0891.34072 · doi:10.1006/jmaa.1997.5483
[18] Zhang, C., Analytic continuation of solutions of the pantograph equation by means of \(θ\) modular formula
[19] Čermák, J., The Abel equation in the asymptotic theory of functional differential equations, Aequationes Mathematicae, 64, 1-2, 89-103 (2002) · Zbl 1010.39007 · doi:10.1007/s00010-002-8033-5
[20] Augustynowicz, A.; Leszczyński, H.; Walter, W., Cauchy-Kovalevskaya theory for equations with deviating variables, Aequationes Mathematicae, 58, 1-2, 143-156 (1999) · Zbl 0929.35004
[21] Kawagishi, M., A generalized Cauchy-Kovalevskaja-Nagumo theorem with shrinkings, Scientiae Mathematicae Japonicae, 54, 1, 39-50 (2001) · Zbl 1200.35006
[22] Kawagishi, M.; Yamanaka, T., The heat equation and the shrinking, Electronic Journal of Differential Equations, 2013, article 97 (2003) · Zbl 1039.35048
[23] Rossovskii, L. E., On the boundary value problem for the elliptic functional-differential equation with contractions, Functional Differential Equations, 8, 3-4, 395-406 (2001) · Zbl 1054.35117
[24] Lastra, A.; Malek, S.; Sanz, J., On \(q\)-asymptotics for linear \(q\)-difference-differential equations with Fuchsian and irregular singularities, Journal of Differential Equations, 252, 10, 5185-5216 (2012) · Zbl 1251.35016 · doi:10.1016/j.jde.2012.01.038
[25] Hardy, G. H.; Riesz, M., The General Theory of Dirichlet Series (1915), Cambridge, UK: Cambridge University Press, Cambridge, UK · JFM 45.0387.03
[26] Titchmarsh, E. C., The Theory of Functions (1939), Oxford, UK: Oxford University Press, Oxford, UK · JFM 65.0302.01
[27] Apostol, T. M., Modular Functions and Dirichlet Series in Number Theory (1976), New York, NY, USA: Springer, New York, NY, USA · Zbl 0332.10017 · doi:10.1007/978-1-4612-0999-7
[28] Leont’ev, A. F., Entire Functions. Entire Functions, Series of Exponentials (1983), Moscow, Russia: Nauka, Moscow, Russia · Zbl 0523.30004
[29] Bohr, H., Almost Periodic Functions (1947), New York, NY, USA: Chelsea, New York, NY, USA
[30] Besicovitch, A. S., Almost Periodic Functions (1954), New York, NY, USA: Dover, New York, NY, USA · Zbl 0004.25303
[31] Corduneanu, C., Almost Periodic Functions (1961), New York, NY, USA: Wiley Interscience, New York, NY, USA · Zbl 1240.42115
[32] Bonet, J.; Braun, R. W.; Meise, R.; Taylor, B. A., Whitney’s extension theorem for nonquasianalytic classes of ultradifferentiable functions, Studia Mathematica, 99, 2, 155-184 (1991) · Zbl 0738.46009
[33] Chaumat, J.; Chollet, A.-M., Surjectivité de l’application restriction à un compact dans des classes de fonctions ultradifférentiables, Mathematische Annalen, 298, 1, 7-40 (1994) · Zbl 0791.46017 · doi:10.1007/BF01459723
[34] Hsieh, P.-F.; Sibuya, Y., Basic Theory of Ordinary Differential Equations. Basic Theory of Ordinary Differential Equations, Universitext (1999), New York, NY, USA: Springer, New York, NY, USA · Zbl 0924.34001 · doi:10.1007/978-1-4612-1506-6
[35] Andrews, G. E.; Askey, R.; Roy, R., Special Sunctions. Special Sunctions, Encyclopedia of Mathematics and its Applications, 71 (1999), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0920.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.