×

Common fixed point theorems in fuzzy metric spaces satisfying \(\phi\)-contractive condition with common limit range property. (English) Zbl 1470.54047

Summary: The objective of this paper is to emphasize the role of “common limit range property” to ascertain the existence of common fixed point in fuzzy metric spaces. Some illustrative examples are furnished which demonstrate the validity of the hypotheses and degree of utility of our results. We derive a fixed point theorem for four finite families of self-mappings which can be utilized to derive common fixed point theorems involving any finite number of mappings. As an application to our main result, we prove an integral-type fixed point theorem in fuzzy metric space. Our results improve and extend a host of previously known results including the ones contained in [M. Imdad et al., J. Nonlinear Anal. Optim. 3, No. 2, 225–237 (2012; Zbl 1394.54023)].

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54A40 Fuzzy topology
47H10 Fixed-point theorems

Citations:

Zbl 1394.54023

References:

[1] Zadeh, L. A., Fuzzy sets, Information and Computation, 8, 338-353 (1965) · Zbl 0139.24606
[2] Kramosil, I.; Michálek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, 11, 5, 336-344 (1975) · Zbl 0319.54002
[3] George, A.; Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, 3, 395-399 (1994) · Zbl 0843.54014 · doi:10.1016/0165-0114(94)90162-7
[4] Gregori, V.; Morillas, S.; Sapena, A., Examples of fuzzy metrics and applications, Fuzzy Sets and Systems, 170, 95-111 (2011) · Zbl 1210.94016 · doi:10.1016/j.fss.2010.10.019
[5] Mishra, S. N.; Sharma, N.; Singh, S. L., Common fixed points of maps on fuzzy metric spaces, International Journal of Mathematics and Mathematical Sciences, 17, 2, 253-258 (1994) · Zbl 0798.54014 · doi:10.1155/S0161171294000372
[6] Singh, B.; Jain, S., Semicompatibility and fixed point theorems in fuzzy metric space using implicit relation, International Journal of Mathematics and Mathematical Sciences, 16, 2617-2629 (2005) · Zbl 1087.54506 · doi:10.1155/IJMMS.2005.2617
[7] Balasubramaniam, P.; Muralisankar, S.; Pant, R. P., Common fixed points of four mappings in a fuzzy metric space, Journal of Fuzzy Mathematics, 10, 2, 379-384 (2002) · Zbl 1022.54004
[8] Beg, I.; Sedghi, S.; Shobe, N., Fixed point theorems in fuzzy metric spaces, International Journal of Analysis, 2013 (2013) · Zbl 1268.54020 · doi:10.1155/2013/934145
[9] Chauhan, S.; Pant, B. D., Common fixed point theorems in fuzzy metric spaces, Bulletin of the Allahabad Mathematical Society, 27, 1, 27-43 (2012) · Zbl 1263.54048
[10] Cho, Y. J., Fixed points in fuzzy metric spaces, Journal of Fuzzy Mathematics, 5, 4, 949-962 (1997) · Zbl 0887.54003
[11] Imdad, M.; Ali, J., Some common fixed point theorems in fuzzy metric spaces, Mathematical Communications, 11, 2, 153-163 (2006) · Zbl 1152.54355
[12] O’Regan, D.; Abbas, M., Necessary and sufficient conditions for common fixed point theorems in fuzzy metric space, Demonstratio Mathematica, 42, 4, 887-900 (2009) · Zbl 1190.54034
[13] Sharma, S., Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems. An International Journal in Information Science and Engineering, 127, 3, 345-352 (2002) · Zbl 0990.54029 · doi:10.1016/S0165-0114(01)00112-9
[14] Pant, R. P., Common fixed points of four mappings, Bulletin of the Calcutta Mathematical Society, 90, 4, 281-286 (1998) · Zbl 0936.54043
[15] Aamri, M.; El Moutawakil, D., Some new common fixed point theorems under strict contractive conditions, Journal of Mathematical Analysis and Applications, 270, 1, 181-188 (2002) · Zbl 1008.54030 · doi:10.1016/S0022-247X(02)00059-8
[16] Ali, J.; Imdad, M., An implicit function implies several contraction conditions, Sarajevo Journal of Mathematics, 4, 4, 269-285 (2008) · Zbl 1180.54052
[17] Liu, Y.; Wu, J.; Li, Z., Common fixed points of single-valued and multivalued maps, International Journal of Mathematics and Mathematical Sciences, 19, 3045-3055 (2005) · Zbl 1087.54019 · doi:10.1155/IJMMS.2005.3045
[18] Abbas, M.; Altun, I.; Gopal, D., Common fixed point theorems for non compatible mappings in fuzzy metric spaces, Bulletin of Mathematical Analysis and Applications, 1, 2, 47-56 (2009) · Zbl 1175.54048
[19] Chauhan, S.; Kumar, S., Coincidence and fixed points in fuzzy metrtc spaces using common property (E.A), Kochi Journal of Mathematics, 8, 135-154 (2013) · Zbl 1271.54075
[20] Gopal, D.; Imdad, M.; Vetro, C., Impact of common property (E.A.) on fixed point theorems in fuzzy metric spaces, Fixed Point Theory and Applications, 2011 (2011) · Zbl 1214.54034 · doi:10.1155/2011/297360
[21] Imdad, M.; Ali, J.; Hasan, M., Common fixed point theorems in fuzzy metric spaces employing common property (E.A.), Mathematical and Computer Modelling, 55, 3-4, 770-778 (2012) · Zbl 1255.54003 · doi:10.1016/j.mcm.2011.09.002
[22] Kumar, S.; Fisher, B., A common fixed point theorem in fuzzy metric space using property (E.A.) and implicit relation, Thai Journal of Mathematics, 8, 3, 439-446 (2010) · Zbl 1214.54036
[23] Kumar, S.; Chauhan, S., Common fixed point theorems using implicit relation and property (E.A) in fuzzy metric spaces, Annals of Fuzzy Mathematics and Informatics, 5, 1, 107-114 (2013) · Zbl 1302.54024
[24] Miheţ, D., Fixed point theorems in fuzzy metric spaces using property (E.A), Nonlinear Analysis. Theory, Methods & Applications, 73, 7, 2184-2188 (2010) · Zbl 1195.54082 · doi:10.1016/j.na.2010.05.044
[25] Pant, V.; Pant, R. P., Fixed points in fuzzy metric space for noncompatible maps, Soochow Journal of Mathematics, 33, 4, 647-655 (2007) · Zbl 1147.47058
[26] Sintunavarat, W.; Kumam, P., Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces, Journal of Applied Mathematics, 2011 (2011) · Zbl 1226.54061 · doi:10.1155/2011/637958
[27] Chauhan, S., Fixed points of weakly compatible mappings in fuzzy metric spaces satisfying common limit in the range property, Indian Journal of Mathematics, 54, 3, 375-397 (2012) · Zbl 1276.54034
[28] Chauhan, S.; Bhatnagar, S.; Radenović, S., Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces, Le Matematiche, 68, 1, 87-98 (2013) · Zbl 1282.54035
[29] Chauhan, S.; Khan, M. A.; Kumar, S., Unified fixed point theorems in fuzzy metric spaces via common limit range property, Journal of Inequalities and Applications, 2013 (2013) · Zbl 1282.54036 · doi:10.1186/1029-242X-2013-182
[30] Chauhan, S.; Sintunavarat, W.; Kumam, P., Common fixed point theorems for weakly compatible mappings in fuzzy metric spaces using (JCLR) property, Applied Mathematics, 3, 9, 976-982 (2012) · doi:10.
[31] Singh, S. L.; Pant, B. D.; Chauhan, S., Fixed point theorems in non-Archimedean Menger PM-spaces, Journal of Nonlinear Analysis and Optimization, 3, 2, 153-160 (2012)
[32] Sintunavarat, W.; Kumam, P., Common fixed points for \(R\)-weakly commuting in fuzzy metric spaces, Annali dell’Universitá di Ferrara, 58, 2, 389-406 (2012) · Zbl 1302.54088 · doi:10.1007/s11565-012-0150-z
[33] Sintunavarat, W.; Chauhan, S.; Kumam, P., Some fixed point results in modified intuitionistic fuzzy metric spaces · Zbl 1316.54021
[34] Imdad, M.; Pant, B. D.; Chauhan, S., Fixed point theorems in Menger spaces using the \((C L R_{S T})\) property and applications, Journal of Nonlinear Analysis and Optimization, 3, 2, 225-237 (2012) · Zbl 1394.54023
[35] Imdad, M.; Ali, J., A general fixed point theorem in fuzzy metric spaces via an implicit function, Journal of Applied Mathematics & Informatics, 26, 3-4, 591-603 (2008)
[36] Schweizer, B.; Sklar, A., Probabilistic Metric Spaces. Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, xvi+275 (1983), New York, NY, USA: North-Holland, New York, NY, USA · Zbl 0546.60010
[37] Grabiec, M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27, 3, 385-389 (1988) · Zbl 0664.54032 · doi:10.1016/0165-0114(88)90064-4
[38] Jungck, G., Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East Journal of Mathematical Sciences, 4, 2, 199-215 (1996) · Zbl 0928.54043
[39] Pathak, H. K.; Rodríguez-López, R.; Verma, R. K., A common fixed point theorem using implicit relation and property (E.A) in metric spaces, Filomat, 21, 2, 211-234 (2007) · Zbl 1141.54018 · doi:10.2298/FIL0702211P
[40] Imdad, M.; Ali, J.; Tanveer, M., Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Chaos, Solitons & Fractals, 42, 5, 3121-3129 (2009) · Zbl 1198.54076 · doi:10.1016/j.chaos.2009.04.017
[41] Branciari, A., A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29, 9, 531-536 (2002) · Zbl 0993.54040 · doi:10.1155/S0161171202007524
[42] Murthy, P. P.; Kumar, S.; Tas, K., Common fixed points of self maps satisfying an integral type contractive condition in fuzzy metric spaces, Mathematical Communications, 15, 2, 521-537 (2010) · Zbl 1213.54069
[43] Sedghi, S.; Shobe, N., Common fixed point theorems for weakly compatible mappings satisfying contractive condition of integral type, Journal of Advanced Research in Applied Mathematics, 3, 4, 67-78 (2011) · doi:10.5373/jaram.821.030711
[44] Shao, X.; Hu, X., Common fixed point under integral type contractive condition in fuzzy metric spaces, Proceedings of the 3rd International Workshop on Advanced Computational Intelligence (IWACI ’10) · doi:10.1109/IWACI.2010.5585201
[45] Sintunavarat, W.; Kumam, P., Gregus-type common fixed point theorems for tangential multivalued mappings of integral type in metric spaces, International Journal of Mathematics and Mathematical Sciences, 2011 (2011) · Zbl 1215.54026 · doi:10.1155/2011/923458
[46] Sintunavarat, W.; Kumam, P., Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type, Journal of Inequalities and Applications, 2011 (2011) · Zbl 1288.54044 · doi:10.1186/1029-242X-2011-3
[47] Altun, I.; Tanveer, M.; Imdad, M., Common fixed point theorems of integral type in Menger PM spaces, Journal of Nonlinear Analysis and Optimization, 3, 1, 55-66 (2012) · Zbl 1413.54098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.