Ma, Zhen Ming Some types of generalized fuzzy \(n\)-fold filters in residuated lattices. (English) Zbl 1470.03020 Abstr. Appl. Anal. 2013, Article ID 736872, 8 p. (2013). Summary: Fuzzy filters and their generalized types have been extensively studied in the literature. In this paper, a one-to-one correspondence between the set of all generalized fuzzy filters and the set of all generalized fuzzy congruences is established, a quotient residuated lattice with respect to generalized fuzzy filter is induced, and several types of generalized fuzzy \(n\)-fold filters such as generalized fuzzy \(n\)-fold positive implicative (fantastic and Boolean) filters are introduced; examples and results are provided to demonstrate the relations among these filters. Cited in 1 Document MSC: 03G10 Logical aspects of lattices and related structures 03G25 Other algebras related to logic × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ward, M.; Dilworth, P. R., Residuated lattice, Transactions of the American Mathematical Society, 45, 335-354 (1939) · JFM 65.0084.01 [2] Turunen, E., Boolean deductive systems of BL-algebras, Archive for Mathematical Logic, 40, 6, 467-473 (2001) · Zbl 1030.03048 · doi:10.1007/s001530100088 [3] Hájek, P., Metamathematics of Fuzzy Logic (1998), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0937.03030 [4] Haveshki, M.; Saeid, A. B.; Eslami, E., Some types of filters in BL algebras, Soft Computing, 10, 8, 657-664 (2006) · Zbl 1103.03062 · doi:10.1007/s00500-005-0534-4 [5] Kondo, M.; Dudek, W. A., Filter theory of BL algebras, Soft Computing, 12, 5, 419-423 (2008) · Zbl 1165.03056 · doi:10.1007/s00500-007-0178-7 [6] Zhu, Y.; Xu, Y., On filter theory of residuated lattices, Information Sciences, 180, 19, 3614-3632 (2010) · Zbl 1228.03045 · doi:10.1016/j.ins.2010.05.034 [7] Borzooei, R. A.; Khosravi Shoar, S.; Ameri, R., Some types of filters in MTL-algebras, Fuzzy Sets and Systems, 187, 1, 92-102 (2012) · Zbl 1250.06017 · doi:10.1016/j.fss.2011.09.001 [8] Haveshki, M., A note on some types of filters in MTL-algebras, Fuzzy Sets and Systems (2013) · Zbl 1334.03062 · doi:10.1016/j.fss.2013.08.014 [9] Haveshki, M.; Eslami, E., \(n\)-fold filters in BL-algebras, Mathematical Logic Quarterly, 54, 2, 176-186 (2008) · Zbl 1145.03038 · doi:10.1002/malq.200710029 [10] Turunen, E.; Tchikapa, N.; Lele, C., \(n\)-Fold implicative basic logic is Gödel logic, Soft Computing, 16, 1, 177-181 (2012) · Zbl 1274.03047 · doi:10.1007/s00500-011-0761-9 [11] Turunen, E.; Tchikapa, N.; Lele, C., Erratum to: \(n\)-Fold implicative basic logic is Gödel logic, Soft Comput, Soft Computing, 16, 1, 183 (2012) · Zbl 1274.03048 · doi:10.1007/s00500-011-0795-z [12] Zahiri, O.; Farahani, H., \(n\)-Fold filters of MTL-algebras, Afrika Matematika (2013) · Zbl 1310.03054 · doi:10.1007/s13370-013-0184-0 [13] Jun, Y. B.; Xu, Y.; Zhang, X. H., Fuzzy filters of MTL-algebras, Information Sciences, 175, 1-2, 120-138 (2005) · Zbl 1077.03044 · doi:10.1016/j.ins.2004.11.004 [14] Liu, L.; Li, K., Fuzzy filters of BL-algebras, Information Sciences, 173, 1-3, 141-154 (2005) · Zbl 1075.03036 · doi:10.1016/j.ins.2004.07.009 [15] Lianzhen, L.; Kaitai, L., Fuzzy Boolean and positive implicative filters of BL-algebras, Fuzzy Sets and Systems, 152, 2, 333-348 (2005) · Zbl 1072.03037 · doi:10.1016/j.fss.2004.10.005 [16] Ma, X.; Zhan, J.; Dudek, W. A., Some kinds of \(\left(\overset{-}{\in}, \overset{-}{\in} \vee \overset{-}{q}\right)\)-fuzzy filters of B L-algebras, Computers and Mathematics with Applications, 58, 2, 248-256 (2009) · Zbl 1189.03077 · doi:10.1016/j.camwa.2009.03.109 [17] Jun, Y. B.; Cho, Y. U.; Roh, E. H.; Zhan, J., General types of \(\left(\in, \in \vee q\right)\)-fuzzy filters in BL-algebras, Neural Computing and Applications, 20, 3, 335-343 (2011) · doi:10.1007/s00521-010-0379-3 [18] Ma, X.; Zhan, J., On \(\left(\in, \in \vee q\right)\)-fuzzy filters of BL-algebras, Journal of Systems Science and Complexity, 21, 1, 144-158 (2008) · Zbl 1184.03066 · doi:10.1007/s11424-008-9073-2 [19] Zhan, J.; Xu, Y., Some types of generalized fuzzy filters of BL-algebras, Computers and Mathematics with Applications, 56, 6, 1604-1616 (2008) · Zbl 1155.06302 · doi:10.1016/j.camwa.2008.03.009 [20] Mahmood, T., Hemirings Characterized by the properties of their \(\left(\overset{-}{\in}, \overset{-}{\in} \vee \overset{-}{q} \kappa\right)\)-fuzzy ideals, Iranian Journal of Science and Technology, 37, 265-275 (2013) [21] Shabir, M.; Mahmood, T., Characterizations of hemirings by \(\left(\in, \in \vee q \kappa\right)\)-fuzzy ideals, Computers and Mathematics with Applications, 61, 4, 1059-1078 (2011) · Zbl 1217.16044 · doi:10.1016/j.camwa.2010.12.056 [22] Shabir, M.; Mahmood, T., Hemirings characterized by the properties of their fuzzy ideals with thresholds, Quasigroups and Related Systems, 18, 195-212 (2010) · Zbl 1230.16046 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.