×

Stochastic analysis of a Hassell-Varley type predation model. (English) Zbl 1420.92100

Summary: We investigate a Hassell-Varley type predator-prey model with stochastic perturbations. By perturbing the growth rate of prey population and death rate of predator population with white noise terms, we construct a stochastic differential equation model to discuss the effects of the environmental noise on the dynamical behaviors. Applying the comparison theorem of stochastic equations and Itô’s formula, the unique positive global solution to the model for any positive initial value is obtained. We find out some sufficient conditions for stochastically asymptotically boundedness, permanence, persistence in mean and extinction of the solution. Furthermore, a series of numerical simulations to illustrate our mathematical findings are presented. The results indicate that the stochastic perturbations do not cause drastic changes of the dynamics in the deterministic model when the noise intensity is small under some conditions, but while the noise intensity is sufficiently large, the species may die out, which does not happen in the deterministic model.

MSC:

92D25 Population dynamics (general)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 5, 1530-1535 (1992)
[2] May, R. M., Stability and Complexity in Model Ecosystems (2001), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 1044.92047
[3] Murray, J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, 18 (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1006.92002
[4] Beretta, E.; Kuang, Y., Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Analysis. Theory, Methods & Applications, 32, 3, 381-408 (1998) · Zbl 0946.34061 · doi:10.1016/S0362-546X(97)00491-4
[5] Mischaikow, K.; Wolkowicz, G., A predator-prey system involving group defense: a connection matrix approach, Nonlinear Analysis. Theory, Methods & Applications, 14, 11, 955-969 (1990) · Zbl 0724.34015 · doi:10.1016/0362-546X(90)90112-T
[6] Cosner, C.; Deangelis, D. L.; Ault, J. S.; Olson, D. B., Effects of spatial grouping on the functional response of predators, Theoretical Population Biology, 56, 1, 65-75 (1999) · Zbl 0928.92031 · doi:10.1006/tpbi.1999.1414
[7] Bandyopadhyay, M.; Chattopadhyay, J., Ratio-dependent predator-prey model: effect of environmental fluctuation and stability, Nonlinearity, 18, 2, 913-936 (2005) · Zbl 1078.34035 · doi:10.1088/0951-7715/18/2/022
[8] Hassell, M. P.; Varley, G. C., New inductive population model for insect parasites and its bearing on biological control, Nature, 223, 5211, 1133-1137 (1969) · doi:10.1038/2231133a0
[9] Abrams, P. A.; Ginzburg, L. R., The nature of predation: prey dependent, ratio dependent or neither?, Trends in Ecology and Evolution, 15, 8, 337-341 (2000) · doi:10.1016/S0169-5347(00)01908-X
[10] Skalski, G. T.; Gilliam, J. F., Functional responses with predator interference: viable alternatives to the Holling type II model, Ecology, 82, 11, 3083-3092 (2001)
[11] Sutherland, W. J., Aggregation and the “ideal free” distribution, The Journal of Animal Ecology, 52, 3, 821-828 (1983)
[12] Gard, T. C., Persistence in stochastic food web models, Bulletin of Mathematical Biology, 46, 3, 357-370 (1984) · Zbl 0533.92028 · doi:10.1016/S0092-8240(84)80044-0
[13] Gard, T. C., Stability for multispecies population models in random environments, Nonlinear Analysis. Theory, Methods & Applications, 10, 12, 1411-1419 (1986) · Zbl 0598.92017 · doi:10.1016/0362-546X(86)90111-2
[14] Øksendal, B. K., Stochastic Differential Equations: An Introduction with Applications (1995), New York, NY, USA: Springer, New York, NY, USA · Zbl 0841.60037
[15] Liu, K.; Mao, X., Exponential stability of non-linear stochastic evolution equations, Stochastic Processes and Their Applications, 78, 2, 173-193 (1998) · Zbl 0933.60072 · doi:10.1016/S0304-4149(98)00048-9
[16] Sarkar, R. R., A stochastic model for autotroph-herbivore system with nutrient reclycing, Ecological Modelling, 178, 3-4, 429-440 (2004) · doi:10.1016/j.ecolmodel.2004.04.013
[17] Bahar, A.; Mao, X., Stochastic delay Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 292, 2, 364-380 (2004) · Zbl 1043.92034 · doi:10.1016/j.jmaa.2003.12.004
[18] Tornatore, E.; Buccellato, S. M.; Vetro, P., Stability of a stochastic SIR system, Physica A, 354, 1-4, 111-126 (2005) · doi:10.1016/j.physa.2005.02.057
[19] Jiang, D. Q.; Shi, N. Z., A note on nonautonomous logistic equation with random perturbation, Journal of Mathematical Analysis and Applications, 303, 1, 164-172 (2005) · Zbl 1076.34062 · doi:10.1016/j.jmaa.2004.08.027
[20] Kooijman, S. A. L. M.; Grasman, J.; Kooi, B. W., A new class of non-linear stochastic population models with mass conservation, Mathematical Biosciences, 210, 2, 378-394 (2007) · Zbl 1134.92038 · doi:10.1016/j.mbs.2007.05.010
[21] Dalal, N.; Greenhalgh, D.; Mao, X. R., A stochastic model for internal HIV dynamics, Journal of Mathematical Analysis and Applications, 341, 2, 1084-1101 (2008) · Zbl 1132.92015 · doi:10.1016/j.jmaa.2007.11.005
[22] Pang, S. L.; Deng, F. Q.; Mao, X. R., Asymptotic properties of stochastic population dynamics, Dynamics of Continuous, Discrete & Impulsive Systems A, 15, 5, 603-620 (2008) · Zbl 1171.34038
[23] Rao, F.; Wang, W. M.; Li, Z. Q., Spatiotemporal complexity of a predator-prey system with the effect of noise and external forcing, Chaos, Solitons & Fractals, 41, 4, 1634-1644 (2009) · Zbl 1198.34080 · doi:10.1016/j.chaos.2008.07.005
[24] Meng, X.-Z., Stability of a novel stochastic epidemic model with double epidemic hypothesis, Applied Mathematics and Computation, 217, 2, 506-515 (2010) · Zbl 1198.92041 · doi:10.1016/j.amc.2010.05.083
[25] Lv, J.; Wang, K., Asymptotic properties of a stochastic predator-prey system with Holling II functional response, Communications in Nonlinear Science and Numerical Simulation, 16, 10, 4037-4048 (2011) · Zbl 1218.92072 · doi:10.1016/j.cnsns.2011.01.015
[26] Ji, C. Y.; Jiang, D. Q.; Li, X. Y., Qualitative analysis of a stochastic ratio-dependent predator-prey system, Journal of Computational and Applied Mathematics, 235, 5, 1326-1341 (2011) · Zbl 1229.92076 · doi:10.1016/j.cam.2010.08.021
[27] Wang, X. X.; Huang, H. L.; Cai, Y. L.; Wang, W. M., The complex dynamics of a stochastic predatorprey model, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.93142 · doi:10.1155/2012/401031
[28] Liu, M.; Wang, K., Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps, Nonlinear Analysis. Theory, Methods & Applications, 85, 204-213 (2013) · Zbl 1285.34047 · doi:10.1016/j.na.2013.02.018
[29] Jiang, D.; Ji, C.; Li, X.; O’Regan, D., Analysis of autonomous Lotka-Volterra competition systems with random perturbation, Journal of Mathematical Analysis and Applications, 390, 2, 582-595 (2012) · Zbl 1258.34099 · doi:10.1016/j.jmaa.2011.12.049
[30] Liu, M.; Wang, K., Analysis of a stochastic autonomous mutualism model, Journal of Mathematical Analysis and Applications, 402, 1, 392-403 (2013) · Zbl 1417.92141 · doi:10.1016/j.jmaa.2012.11.043
[31] Rao, F., Dynamical analysis of a stochastic predator-prey model with an Allee effect, Abstract and Applied Analysis, 2013 (2013) · Zbl 1288.92029 · doi:10.1155/2013/340980
[32] Jiang, D. Q.; Shi, N. Z.; Li, X. Y., Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, Journal of Mathematical Analysis and Applications, 340, 1, 588-597 (2008) · Zbl 1140.60032 · doi:10.1016/j.jmaa.2007.08.014
[33] Li, X. Y.; Mao, X. R., Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete and Continuous Dynamical Systems A, 24, 2, 523-545 (2009) · Zbl 1161.92048 · doi:10.3934/dcds.2009.24.523
[34] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43, 3, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.