Chen, Dongyang; Li, Lei; Wang, Risheng; Wang, Ya-Shu Nonvanishing preservers and compact weighted composition operators between spaces of Lipschitz functions. (English) Zbl 1470.46063 Abstr. Appl. Anal. 2013, Article ID 741050, 8 p. (2013). Summary: We will give the \(\alpha\)-Lipschitz version of the Banach-Stone type theorems for lattice-valued \(\alpha\)-Lipschitz functions on some metric spaces. In particular, when \(X\) and \(Y\) are bounded metric spaces, if \(T : \operatorname{Lip} \left(X\right) \rightarrow \operatorname{Lip} \left(Y\right)\) is a nonvanishing preserver, then \(T\) is a weighted composition operator \(T f = h \cdot f \circ \varphi\), where \(\varphi : Y \rightarrow X\) is a Lipschitz homeomorphism. We also characterize the compact weighted composition operators between spaces of Lipschitz functions. Cited in 2 Documents MSC: 46E40 Spaces of vector- and operator-valued functions 47B33 Linear composition operators × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Garrido, M. I.; Jaramillo, J. A., Variations on the Banach-Stone theorem, Extracta Mathematicae, 17, 3, 351-383 (2002) · Zbl 1027.54021 [2] Jarosz, K.; Pathak, V. D.; Jarosz, K., Isometries and small bound isomorphisms of function spaces, Function Spaces. Function Spaces, Lecture Notes in Pure and Applied Mathematics, 136, 241-271 (1992), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0804.46030 [3] Kamowitz, H., Compact weighted endomorphisms of \(C \left(X\right)\), Proceedings of the American Mathematical Society, 83, 3, 517-521 (1981) · Zbl 0509.47026 [4] Cao, J.; Reilly, I.; Xiong, H., A lattice-valued Banach-Stone theorem, Acta Mathematica Hungarica, 98, 1-2, 103-110 (2003) · Zbl 1027.46025 · doi:10.1023/A:1022861506272 [5] Chen, J.-X.; Chen, Z. L.; Wong, N., A banach-stone theorem for riesz isomorphisms of banach lattices, Proceedings of the American Mathematical Society, 136, 11, 3869-3874 (2008) · Zbl 1160.46026 · doi:10.1090/S0002-9939-08-09582-8 [6] Ercan, Z.; Önal, S., Banach-stone theorem for Banach lattice valued continuous functions, Proceedings of the American Mathematical Society, 135, 9, 2827-2829 (2007) · Zbl 1127.46026 · doi:10.1090/S0002-9939-07-08788-6 [7] Ercan, Z.; Önal, S., The Banach-Stone theorem revisited, Topology and its Applications, 155, 16, 1800-1803 (2008) · Zbl 1166.46309 · doi:10.1016/j.topol.2008.05.018 [8] Miao, X.; Cao, J.; Xiong, H., Banach-Stone theorems and Riesz algebras, Journal of Mathematical Analysis and Applications, 313, 1, 177-183 (2006) · Zbl 1102.46017 · doi:10.1016/j.jmaa.2005.08.050 [9] Garrido, M. I.; Jaramillo, J. A., Homomorphisms on function lattices, Monatshefte fur Mathematik, 141, 2, 127-146 (2004) · Zbl 1058.54008 · doi:10.1007/s00605-002-0011-4 [10] Garrido, M. I.; Jaramillo, J. A., Lipschitz-type functions on metric spaces, Journal of Mathematical Analysis and Applications, 340, 1, 282-290 (2008) · Zbl 1139.46025 · doi:10.1016/j.jmaa.2007.08.028 [11] Weaver, N., Lattices of Lipschitz functions, Pacific Journal of Mathematics, 164, 179-193 (1994) · Zbl 0797.46007 · doi:10.2140/pjm.1994.164.179 [12] Jiménez-Vargas, A.; Villegas-Vallecillos, M., Order isomorphisms of little Lipschitz algebras, Houston Journal of Mathematics, 34, 4, 1185-1195 (2008) · Zbl 1169.46010 [13] Jiménez-Vargas, A.; Campoy, A. M.; Villegas-Vallecillos, M., The uniform separation property and banach-stone theorems for lattice-valued lipschitz functions, Proceedings of the American Mathematical Society, 137, 11, 3769-3777 (2009) · Zbl 1202.46043 · doi:10.1090/S0002-9939-09-09941-9 [14] Dubarbie, L., Maps preserving common zeros between subspaces of vector-valued continuous functions, Positivity, 14, 4, 695-703 (2010) · Zbl 1220.47042 · doi:10.1007/s11117-010-0046-z [15] Araujo, J.; Dubarbie, L., Biseparating maps between Lipschitz function spaces, Journal of Mathematical Analysis and Applications, 357, 1, 191-200 (2009) · Zbl 1169.47024 · doi:10.1016/j.jmaa.2009.03.065 [16] Li, L.; Leung, D., Order isomorphisms on function space [17] Li, L.; Wong, N.-C., Kaplansky theorem of completely regular spaces [18] Weaver, N., Lipschitz Algebras (1999), Singapore: World Scientific Pbulishing, Singapore · Zbl 0936.46002 [19] Kamowitz, H.; Scheinberg, S., Some properties of endomorphisms of Lipschitz algebras, Studia Mathematica, 96, 3, 383-391 (1990) [20] Jiménez-Vargas, A.; Villegas-Vallecillos, M., Compact composition operators on noncompact Lipschitz spaces, Journal of Mathematical Analysis and Applications, 398, 1, 221-229 (2013) · Zbl 1279.47042 · doi:10.1016/j.jmaa.2012.08.044 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.