×

Describing the dynamics and complexity of Matsumoto-Nonaka’s duopoly model. (English) Zbl 1470.91153

Summary: We study the duopoly model proposed by A. Matsumoto and Y. Nonaka [“Statistical dynamics in a chaotic Cournot model with complementary goods”, J. Econ. Behav. Organ. 61, No. 4, 769–783 (2006; doi:10.1016/j.jebo.2004.07.008)], in which two firms produce two complementary goods, and there are externalities of different signs. We analyze the topological complexity of the model by computing its topological entropy with prescribed accuracy, and, in addition, we show when such topological complexity is physically observable by characterizing the attractors. Finally, we exploit the fact that reaction maps have negative Schwarzian derivative to show the existence of absolutely continuous (with respect to Lebesgue measure) ergodic measures, and, as an economic application, we compute the average profit for almost all initial conditions.

MSC:

91B55 Economic dynamics
37B40 Topological entropy

References:

[1] Matsumoto, A.; Nonaka, N., Statistical dynamics in a chaotic Cournot model with complementary goods, Journal of Economic Behavior & Organization, 61, 769-783 (2006) · doi:10.1016/j.jebo.2004.07.008
[2] Agliari, A.; Bignami, F., Multistability and global dynamics in a complementary good market model, Pure Mathematics and Applications, 16, 4, 319-343 (2005) · Zbl 1135.37316
[3] Adler, R. L.; Konheim, A. G.; McAndrew, M. H., Topological entropy, Transactions of the American Mathematical Society, 114, 309-319 (1965) · Zbl 0127.13102 · doi:10.1090/S0002-9947-1965-0175106-9
[4] Misiurewicz, M.; Szlenk, W., Entropy of piecewise monotone mappings, Studia Mathematica, 67, 1, 45-63 (1980) · Zbl 0445.54007
[5] Dana, R.-A.; Montrucchio, L., Dynamic complexity in duopoly games, Journal of Economic Theory, 40, 1, 40-56 (1986) · Zbl 0617.90104 · doi:10.1016/0022-0531(86)90006-2
[6] Block, L.; Keesling, J.; Li, S. H.; Peterson, K., An improved algorithm for computing topological entropy, Journal of Statistical Physics, 55, 5-6, 929-939 (1989) · Zbl 0714.54018 · doi:10.1007/BF01041072
[7] Collet, P.; Crutchfield, J. P.; Eckmann, J.-P., Computing the topological entropy of maps, Communications in Mathematical Physics, 88, 2, 257-262 (1983) · Zbl 0529.58029 · doi:10.1007/BF01209479
[8] Block, L.; Keesling, J., Computing the topological entropy of maps of the interval with three monotone pieces, Journal of Statistical Physics, 66, 3-4, 755-774 (1992) · Zbl 0892.58023 · doi:10.1007/BF01055699
[9] Cánovas, J. S.; Guillermo, M. M., Computing topological entropy for periodic sequences of unimodal maps · Zbl 1510.37125
[10] Blanchard, F.; Glasner, E.; Kolyada, S.; Maass, A., On Li-Yorke pairs, Journal für die Reine und Angewandte Mathematik, 547, 51-68 (2002) · Zbl 1059.37006 · doi:10.1515/crll.2002.053
[11] Martens, M.; de Melo, W.; van Strien, S., Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Mathematica, 168, 1, 273-318 (1992) · Zbl 0761.58007 · doi:10.1007/BF02392981
[12] Balibrea, F.; López, V. J., The measure of scrambled sets: a survey, Acta Universitatis Matthiae Belii, 7, 3-11 (1999) · Zbl 0967.37021
[13] Smítal, J., Chaotic functions with zero topological entropy, Transactions of the American Mathematical Society, 297, 1, 269-282 (1986) · Zbl 0639.54029 · doi:10.2307/2000468
[14] de Melo, W.; van Strien, S., One-Dimensional Dynamics. One-Dimensional Dynamics, Modern Surveys in Mathematics, 25 (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0791.58003
[15] Guckenheimer, J., Sensitive dependence to initial conditions for one-dimensional maps, Communications in Mathematical Physics, 70, 2, 133-160 (1979) · Zbl 0429.58012 · doi:10.1007/BF01982351
[16] Collet, P.; Eckmann, J.-P., Iterated Maps on the Interval as Dynamical Systems. Iterated Maps on the Interval as Dynamical Systems, Progress in Physics, 1 (1980), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 0458.58002
[17] Singer, D., Stable orbits and bifurcation of maps of the interval, SIAM Journal on Applied Mathematics, 35, 2, 260-267 (1978) · Zbl 0391.58014 · doi:10.1137/0135020
[18] Balibrea, F.; Linero, A.; Cánovas, J. S., On \(\omega \)-limit sets of antitriangular maps, Topology and its Applications, 137, 1-3, 13-19 (2004) · Zbl 1042.54026 · doi:10.1016/S0166-8641(03)00195-0
[19] Balibrea, F.; Linero, A.; Canovas, J. S., Minimal sets of antitriangular maps, International Journal of Bifurcation and Chaos, 13, 7, 1733-1741 (2003) · Zbl 1056.37005 · doi:10.1142/S021812740300759X
[20] Walters, P., An Introduction to Ergodic Theory. An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79 (1982), New York, NY, USA: Springer, New York, NY, USA · Zbl 0475.28009
[21] Johnson, S. D., Singular measures without restrictive intervals, Communications in Mathematical Physics, 110, 2, 185-190 (1987) · Zbl 0641.58024 · doi:10.1007/BF01207362
[22] Balibrea, F.; López, V. J.; Peña, J. S. C., Some results on entropy and sequence entropy, International Journal of Bifurcation and Chaos, 9, 9, 1731-1742 (1999) · Zbl 1089.37501 · doi:10.1142/S0218127499001218
[23] Bruin, H.; Shen, W.; van Strien, S., Existence of unique SRB-measures is typical for real unicritical polynomial families, Annales Scientifiques de l’École Normale Supérieure, 39, 3, 381-414 (2006) · Zbl 1112.37018 · doi:10.1016/j.ansens.2006.02.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.