Ma, Rong; Zhang, Yulong; Zhang, Guohe On a kind of Dirichlet character sums. (English) Zbl 1470.11246 Abstr. Appl. Anal. 2013, Article ID 750964, 8 p. (2013). Summary: Let \(p \geq 3\) be a prime and let \(\chi\) denote the Dirichlet character modulo \(p\). For any prime \(q\) with \(q < p\), define the set \(E \left(q, p\right) = \left\{a \mid 1 \leq a, \overline{a} \leq p, a \overline{a} \equiv 1 \pmod{p} \text{ and } a \equiv \overline{a} \pmod{q}\right\}\). In this paper, we study a kind of mean value of Dirichlet character sums \(\sum a \leq p \, a \in E \left(q, p\right) \chi(a)\), and use the properties of the Dirichlet \(L\)-functions and generalized Kloosterman sums to obtain an interesting estimate. Cited in 1 Document MSC: 11N37 Asymptotic results on arithmetic functions 11A07 Congruences; primitive roots; residue systems 11L05 Gauss and Kloosterman sums; generalizations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Pólya, G., Über die Verteilung der quadratische Reste und Nichtreste, Quadratischer Nichtrest, 21-29 (1918) · JFM 46.0265.02 [2] Hua, L. K.; Min, S. H., On a double exponential sum, Science Record, 1, 23-25 (1942) · Zbl 0060.10910 [3] Burgess, D. A., On character sums and L-series. II, Proceedings of the London Mathematical Society, 13, 524-536 (1963) · Zbl 0123.04404 [4] Burgess, D. A., The character sum estimate with \(r = 3\), Journal of the London Mathematical Society, 33, 219-226 (1986) · Zbl 0593.10033 [5] Xi, P.; Yi, Y., On character sums over flat numbers, Journal of Number Theory, 130, 5, 1234-1240 (2010) · Zbl 1241.11099 · doi:10.1016/j.jnt.2009.10.011 [6] Wenpeng, Z., On the distribution of inverses modulo \(n\), Journal of Number Theory, 61, 2, 301-310 (1996) · Zbl 0874.11006 · doi:10.1006/jnth.1996.0151 [7] Richard, K. G., Unsolved Problems in Number Theory (1981), Springer · Zbl 0474.10001 [8] Xu, Z.; Zhang, W., On a problem of D. H. Lehmer over short intervals, Journal of Mathematical Analysis and Applications, 320, 2, 756-770 (2006) · Zbl 1098.11050 · doi:10.1016/j.jmaa.2005.07.054 [9] Zhang, W.; Zongben, X.; Yuan, Y., A problem of D. H. Lehmer and its mean square value formula, Journal of Number Theory, 103, 2, 197-213 (2003) · Zbl 1046.11070 · doi:10.1016/S0022-314X(03)00113-6 [10] Zhang, W., A problem of D. H. Lehmer and its generalization, Compositio Mathematica, 86, 307-316 (1993) · Zbl 0783.11002 [11] Ma, R.; Zhang, Y., On a kind of generalized Lehmer problem, Czechoslovak Mathematical Jounal, 62, 137, 1135-1146 (2012) · Zbl 1259.11090 [12] Zhang, W., On the difference between a D. H. Lehmer number and its inverse modulo \(q\), Acta Arithmetica, 68, 3, 255-263 (1994) · Zbl 0826.11003 [13] Lu, Y. M.; Yi, Y., On the generalization of the D. H. Lehmer problem, Acta Mathematica Sinica, 25, 8, 1269-1274 (2009) · Zbl 1170.11022 · doi:10.1007/s10114-009-7652-3 [14] Chengdong, P.; Chengbiao, P., Elements of the Analytic Number Theory (1991), Beijing, China: Science Press, Beijing, China [15] Malyshev, A. V., A generalization of Kloosterman sums and their estimates, Vestnik Leningrad University, 15, 13, 59-75 (1960) · Zbl 0102.03801 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.