Wang, Lijun; Li, Jingna; Xia, Li Existence and Hölder regularity of the fractional Landau-Lifshitz equation without Gilbert damping term. (English) Zbl 1470.35346 Abstr. Appl. Anal. 2013, Article ID 757824, 9 p. (2013). Summary: Existence and Hölder regularity of weak solutions to the fractional Landau-Lifshitz equation without Gilbert damping term is proved through viscosity approximation. Since the nonlinear term is nonlocal and of full order of the equation, a commutator is constructed to get the convergence of the approximating solutions. MSC: 35Q60 PDEs in connection with optics and electromagnetic theory 35Q55 NLS equations (nonlinear Schrödinger equations) × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Hubert, A.; Schafer, R., Magnetic Domains: The Analysis of Magnetic Microstructures (1998), Berlin, Germany: Springer, Berlin, Germany [2] Daughton, J. M., Magnetoresistive memory technology, Thin Solid Films, 216, 1, 162-168 (1992) · doi:10.1016/0040-6090(92)90888-I [3] Heinrich, B.; Bland, J. A. C., Ultrathin Magnetic Structures I (1994), Berlin, Germany: Springer, Berlin, Germany [4] Prinz, G. A., Magnetoelectronics, Science, 282, 5394, 1660-1663 (1998) · doi:10.1126/science.282.5394.1660 [5] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Differential Equations (1993), New Youk, NY, USA: John Wiley, New Youk, NY, USA · Zbl 0789.26002 [6] Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engeineering 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0918.34010 [7] Constantin, P.; Cordoba, D.; Wu, J., On the critical dissipative quasi-geostrophic equation, Indiana University Mathematics Journal, 50, 97-106 (2001) · Zbl 0989.86004 · doi:10.1512/iumj.2001.50.2153 [8] Constantin, P.; Majda, A. J.; Tabak, E., Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7, 6, 1495-1533 (1994) · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001 [9] Constantin, P.; Wu, J., Behavior of solutions of 2D quasi-geostrophic equations, SIAM Journal on Mathematical Analysis, 30, 5, 937-948 (1999) · Zbl 0957.76093 · doi:10.1137/S0036141098337333 [10] Landau, L.; Lifshitz, E., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Ukrainian Journal of Physics, 8, 153-169 (1935) · Zbl 0012.28501 [11] Guo, B. L.; Hong, M. C., The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calculus of Variations and Partial Differential Equations, 1, 3, 311-334 (1993) · Zbl 0798.35139 · doi:10.1007/BF01191298 [12] Yunmei, M. C.; Shijin, J. D.; Boling, L. G., Partial regularity for two dimensional Landau-Lifshitz equations, Acta Mathematica Sinica, 14, 3, 423-432 (1998) · Zbl 0906.35025 · doi:10.1007/BF02580447 [13] Alouges, F.; Soyeur, A., On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness, Nonlinear Analysis, 18, 11, 1071-1084 (1992) · Zbl 0788.35065 · doi:10.1016/0362-546X(92)90196-L [14] Visintin, A., On Landau-Lifshitz’ equations for ferromagnetism, Japan Journal of Applied Mathematics, 2, 1, 69-84 (1985) · Zbl 0613.35018 · doi:10.1007/BF03167039 [15] Joly, J. L.; Métivier, G.; Rauch, J., Global solutions to Maxwell equations in a ferromagnetic medium, Annales Henri Poincare, 1, 2, 307-340 (2000) · Zbl 0964.35155 · doi:10.1007/PL00001007 [16] Carbou, G.; Fabrie, P., Regular solutions for Landau-Lifshitz equation in a bounded domain, Differential Integral Equations, 14, 213-229 (2001) · Zbl 1161.35421 [17] Guo, B.; Pu, X., The fractional Landau-Lifshitz-Gilbert equation and the heat flow of harmonic maps, Calculus of Variations and Partial Differential Equations, 42, 1-2, 1-19 (2011) · Zbl 1229.35284 [18] Sulem, P. L.; Sulem, C.; Bardos, C., On the continuous limit for a system of classical spins, Communications in Mathematical Physics, 107, 3, 431-454 (1986) · Zbl 0614.35087 · doi:10.1007/BF01220998 [19] Chang, N.; Shatah, J.; Uhlenbeck, K., Schrödinger maps, Communications on Pure and Applied Mathematics, 53, 5, 590-602 (2000) · Zbl 1028.35134 · doi:10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R [20] Shatah, J.; Zeng, C., Schrödinger maps and anti-ferromagnetic chains, Communications in Mathematical Physics, 262, 2, 299-315 (2006) · Zbl 1104.58007 · doi:10.1007/s00220-005-1490-7 [21] Ding, W.; Tang, H.; Zeng, C., Self-similar solutions of Schrödinger flows, Calculus of Variations and Partial Differential Equations, 34, 2, 267-277 (2009) · Zbl 1167.35510 · doi:10.1007/s00526-008-0198-x [22] Weinan, N. E.; Wang, X. P., Numerical methods for the Landau-Lifshitz equation, SIAM Journal on Numerical Analysis, 38, 5, 1647-1665 (2001) · Zbl 0988.65079 · doi:10.1137/S0036142999352199 [23] García-Cervera, C. J.; Wang, X., Spin-polarized currents in ferromagnetic multilayers, Journal of Computational Physics, 224, 2, 699-711 (2007) · Zbl 1116.82032 · doi:10.1016/j.jcp.2006.10.029 [24] Lions, J. L., Quelques Methodes de Resolution des Problems Aux Limites Non Lineaire, Chinese Edition (1996), GuangZhou, China: Sun Yat-sen University Press, GuangZhou, China [25] Coifman, R.; Meyer, Y., Nolinear Harmonic Analysis, Opertor Theory and P.D.E. (1986), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA [26] Friedman, A., Partial Differential Equations (1969), New York, NY, USA: Holt, Rinehart and Winston, New York, NY, USA · Zbl 0224.35002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.