×

Positive solutions for nonlinear integro-differential equations of mixed type in Banach spaces. (English) Zbl 1470.34210

Summary: We establish some new existence theorems on the positive solutions for nonlinear integro-differential equations which do not possess any monotone properties in ordered Banach spaces by means of Banach contraction mapping principle and cone theory based on some new comparison results.

MSC:

34K30 Functional-differential equations in abstract spaces
45J05 Integro-ordinary differential equations
45M20 Positive solutions of integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Guo, D., Extremal solutions of nonlinear Fredholm integral equations in ordered Banach spaces, Northeastern Mathematical Journal, 7, 4, 416-423 (1991) · Zbl 0755.45024
[2] Deimling, K., Nonlinear Functional Analysis (1985), New York, NY, USA: Springer, New York, NY, USA · Zbl 0559.47040
[3] Chen, Y. B.; Zhuang, W., The existence of maximal and minimal solution of the nonlinear integro-differential equation in Banach space, Applicable Analysis, 22, 2, 139-147 (1986) · Zbl 0576.45010 · doi:10.1080/00036818608839612
[4] Du, Y., Fixed points of increasing operators in ordered Banach spaces and applications, Applicable Analysis, 38, 1-2, 1-20 (1990) · Zbl 0671.47054 · doi:10.1080/00036819008839957
[5] Du, S.; Lakshmikantham, V., Monotone iterative technique for differential equations in a Banach space, Journal of Mathematical Analysis and Applications, 87, 2, 454-459 (1982) · Zbl 0523.34057 · doi:10.1016/0022-247X(82)90134-2
[6] Ladde, G.; Lakshmikantham, V.; Vatsala, A., Monotone Iterative Techniques for Nonlinear Differential Equations (1985), Boston, Mass, USA: Pitman, Boston, Mass, USA · Zbl 0658.35003
[7] Lakshmikantham, V.; Leela, S., Nonlinear Differential Equations in Abstract Spaces (1981), New York, NY, USA: Pergamon Press, New York, NY, USA · Zbl 0456.34002
[8] Lakshmikantham, V.; Leela, S.; Vatsala, A., Method of quasi-upper and lower solutions in abstract cones, Nonlinear Analysis: Theory, Methods & Applications, 6, 8, 833-838 (1982) · Zbl 0497.34047 · doi:10.1016/0362-546X(82)90067-0
[9] Guo, D., Semi-Ordered Method in Nonlinear Analysis, Jinan, China: Shandong Science and Technology Press, Jinan, China
[10] Su, H.; Liu, L.; Wu, C., Iterative solution for systems of a class of abstract operator equations and applications, Acta Mathematica Sinica, 27, 3, 449-455 (2007) · Zbl 1145.34350
[11] Zhang, X., Fixed point theorems for a class of nonlinear operators in Banach spaces and applications, Nonlinear Analysis: Theory, Methods & Applications, 69, 2, 536-543 (2008) · Zbl 1168.47041 · doi:10.1016/j.na.2007.05.040
[12] Liu, L., Iterative method for solutions and coupled quasi-solutions of nonlinear integro-differential equations of mixed type in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 42, 583-598 (2000) · Zbl 0962.45007 · doi:10.1016/S0362-546X(99)00116-9
[13] Chen, Y. Z., Existence theorems of coupled fixed points, Journal of Mathematical Analysis and Applications, 154, 1, 142-150 (1991) · Zbl 0719.47041 · doi:10.1016/0022-247X(91)90076-C
[14] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0661.47045
[15] Bhaskar, T. G.; Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods & Applications, 65, 7, 1379-1393 (2006) · Zbl 1106.47047 · doi:10.1016/j.na.2005.10.017
[16] Krasnosel’skii, M.; Zabreiko, P., Geometrical Methods of Nonlinear Analysis (1984), Berlin, Germany: Springer, Berlin, Germany · Zbl 0546.47030 · doi:10.1007/978-3-642-69409-7
[17] Heinz, H. P., On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Analysis: Theory, Methods & Applications, 7, 12, 1351-1371 (1983) · Zbl 0528.47046 · doi:10.1016/0362-546X(83)90006-8
[18] Banaś, J.; Goebel, K., Measures of Noncompactness in Banach Spaces. Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, 60 (1980), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0441.47056
[19] Mönch, H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 4, 5, 985-999 (1980) · Zbl 0462.34041 · doi:10.1016/0362-546X(80)90010-3
[20] Sun, J.; Liu, L., Iterative method for coupled quasi-solutions of mixed monotone operator equations, Applied Mathematics and Computation, 52, 2-3, 301-308 (1992) · Zbl 0763.65041 · doi:10.1016/0096-3003(92)90084-E
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.