Liu, Yanqin; Xu, Fengsheng; Yin, Xiuling Variational approximate solutions of fractional nonlinear nonhomogeneous equations with Laplace transform. (English) Zbl 1470.35400 Abstr. Appl. Anal. 2013, Article ID 819268, 9 p. (2013). Summary: A novel modification of the variational iteration method is proposed by means of Laplace transform and homotopy perturbation method. The fractional lagrange multiplier is accurately determined by the Laplace transform and the nonlinear one can be easily handled by the use of He’s polynomials. Several fractional nonlinear nonhomogeneous equations are analytically solved as examples and the methodology is demonstrated. MSC: 35R11 Fractional partial differential equations 35A22 Transform methods (e.g., integral transforms) applied to PDEs 35A35 Theoretical approximation in context of PDEs × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198, xxiv+340 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008 [2] Hilfer, R., Applications of Fractional Calculus in Physics, viii+463 (2000), River Edge, NJ, USA: World Scientific Publishing, River Edge, NJ, USA · Zbl 0998.26002 · doi:10.1142/9789812817747 [3] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1, 77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3 [4] Diethelm, K.; Ford, N. J., Multi-order fractional differential equations and their numerical solution, Applied Mathematics and Computation, 154, 3, 621-640 (2004) · Zbl 1060.65070 · doi:10.1016/S0096-3003(03)00739-2 [5] Liu, F. W.; Anh, V.; Turner, I., Numerical solution of the space fractional Fokker-Planck equation, Journal of Computational and Applied Mathematics, 166, 1, 209-219 (2004) · Zbl 1036.82019 [6] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods. Fractional Calculus: Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3, xxiv+400 (2012), Boston, Mass, USA: World Scientific, Boston, Mass, USA · Zbl 1248.26011 · doi:10.1142/9789814355216 [7] Duan, J. S.; Rach, R.; Buleanu, D.; Wazwaz, A. M., A review of the Adomian decomposition method and its applicaitons to fractional differential equations, Communications in Fractional Calculus, 3, 73-99 (2012) [8] He, J.-H., Variational iteration method—a kind of non-linear analytical technique: some examples, International Journal of Non-Linear Mechanics, 34, 4, 699-708 (1999) · Zbl 1342.34005 [9] Wazwaz, A.-M., The variational iteration method for analytic treatment of linear and nonlinear ODEs, Applied Mathematics and Computation, 212, 1, 120-134 (2009) · Zbl 1166.65353 · doi:10.1016/j.amc.2009.02.003 [10] Erturk, V. S.; Momani, S.; Odibat, Z., Application of generalized differential transform method to multi-order fractional differential equations, Communications in Nonlinear Science and Numerical Simulation, 13, 8, 1642-1654 (2008) · Zbl 1221.34021 · doi:10.1016/j.cnsns.2007.02.006 [11] He, J.-H., Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation, 135, 1, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5 [12] Odibat, Z.; Momani, S., Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos, Solitons & Fractals, 36, 1, 167-174 (2008) · Zbl 1152.34311 · doi:10.1016/j.chaos.2006.06.041 [13] Jiang, X. Y.; Qi, H. T., Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative, Journal of Physics, 45, 48 (2012) · Zbl 1339.80006 · doi:10.1088/1751-8113/45/48/485101 [14] Ma, J. H.; Liu, Y. Q., Exact solutions for a generalized nonlinear fractional Fokker-Planck equation, Nonlinear Analysis. Real World Applications, 11, 1, 515-521 (2010) · Zbl 1181.35293 · doi:10.1016/j.nonrwa.2009.01.006 [15] Liu, Y.-Q.; Ma, J.-H., Exact solutions of a generalized multi-fractional nonlinear diffusion equation in radical symmetry, Communications in Theoretical Physics, 52, 5, 857-861 (2009) · Zbl 1182.35067 · doi:10.1088/0253-6102/52/5/20 [16] Liu, Y. Q., Approximate solutions of fractional nonlinear equations using homotopy perturbation transformation method, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.65136 · doi:10.1155/2012/752869 [17] Liu, Y. Q., Study on space-time fractional nonlinear biological equation in radial symmetry, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.35301 [18] Liu, Y. Q., Variational homotopy perturbation method for solving fractional initial boundary value problems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.65191 [19] Guo, S. M.; Mei, L. Q.; Li, Y., Fractional variational homotopy perturbation iteration method and its application to a fractional diffusion equation, Applied Mathematics and Computation, 219, 11, 5909-5917 (2013) · Zbl 1273.65157 · doi:10.1016/j.amc.2012.12.003 [20] He, J.-H., Variational iteration method—some recent results and new interpretations, Journal of Computational and Applied Mathematics, 207, 1, 3-17 (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009 [21] Wu, G.-C.; Baleanu, D., Variational iteration method for fractional calculus—a universal approach by Laplace transform, Advances in Difference Equations, 2013 (2013) · Zbl 1365.34022 · doi:10.1186/1687-1847-2013-18 [22] Wu, G. C., Laplace tranform overcoming principle drawbacks in applicaiton of the variation iteration method to fractional heat equations, Thermal Science, 16, 4, 1257-1261 (2012) [23] Ghorbani, A., Beyond Adomian polynomials: He polynomials, Chaos, Solitons and Fractals, 39, 3, 1486-1492 (2009) · Zbl 1197.65061 · doi:10.1016/j.chaos.2007.06.034 [24] Jafari, H.; Alipour, M.; Tajadodi, H., Two-dimensional differential transform method for solving nonlinear partial differential equaitons, International Journal of Research and Reviews in Applied Sciences, 2, 1, 47-52 (2010) · Zbl 1180.65102 [25] Momani, S.; Odibat, Z., A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula, Journal of Computational and Applied Mathematics, 220, 1-2, 85-95 (2008) · Zbl 1148.65099 · doi:10.1016/j.cam.2007.07.033 [26] Sweilam, N. H.; Khader, M. M., Variational iteration method for one dimensional nonlinear thermoelasticity, Chaos, Solitons & Fractals, 32, 1, 145-149 (2007) · Zbl 1131.74018 · doi:10.1016/j.chaos.2005.11.028 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.