×

Numerical solution of a kind of fractional parabolic equations via two difference schemes. (English) Zbl 1470.65148

Summary: A kind of parabolic equation was extended to the concept of fractional calculus. The resulting equation is, however, difficult to handle analytically. Therefore, we presented the numerical solution via the explicit and the implicit schemes. We presented together the stability and convergence of this time-fractional parabolic equation with two difference schemes. The explicit and the implicit schemes in this case are stable under some conditions.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations

Software:

ma2dfc

References:

[1] Ashyralyev, A.; Dal, F.; Pinar, Z., On the numerical solution of fractional hyperbolic partial differential equations, Mathematical Problems in Engineering, 2009 (2009) · Zbl 1184.65083 · doi:10.1155/2009/730465
[2] Ashyralyev, A., A note on fractional derivatives and fractional powers of operators, Journal of Mathematical Analysis and Applications, 357, 1, 232-236 (2009) · Zbl 1175.26004 · doi:10.1016/j.jmaa.2009.04.012
[3] Podlubny, I.; El-Sayed, A. M. A., On Two Definitions of Fractional Calculus (1996), Slovak Academy of Science, Institute of Experimental Physics
[4] Yakar, A.; Koksal, M. E., Existence results for solutions of nonlinear fractional differential equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.34013 · doi:10.1155/2012/267108
[5] Atangana, A.; Botha, J. F., Generalized groundwater flow equation using the concept of variable order derivative, Boundary Value Problems, 2013, article 53 (2013) · Zbl 1291.35206 · doi:10.1186/1687-2770-2013-53
[6] Atangana, A.; Oukouomi Noutchie, S. C., Stability and convergence of a tme-fractional variable order Hantush equation for a deformable aquifer, Abstract and Applied Analysis, 2013 (2013) · Zbl 1301.76072 · doi:10.1155/2013/691060
[7] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus Models and Numerical Methods Series on Complexity, Nonlinearity and Chaos (2012), World Scientific · Zbl 1248.26011 · doi:10.1142/9789814355216
[8] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherlands: Elsevier Science B.V., Amsterdam, The Netherlands · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[9] Oldham, K. B.; Spanier, J., The Fractional Calculus. The Fractional Calculus, Mathematics in Science and Engineering, 111 (1974), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0428.26004
[10] Ross, B., Fractional Calculus and Its Applications. Fractional Calculus and Its Applications, Lecture Notes in Mathematics, 457 (1975), Berlin, Germany: Springer, Berlin, Germany · Zbl 0293.00010
[11] Luchko, Y.; Gorenflo, R., The initial value problem for some fractional differential equations with the Caputo derivative, Preprint Series, A08-98 (1998), Freic Universitat Berlin
[12] Atangana, A.; Alabaraoye, E., Solving system of fractional partial differential equations arisen in the model of HIV infection of CD \(4^+\) cells and attractor one-dimensional Keller-Segel equation, Advances in Difference Equations, 2013, article 94 (2013) · Zbl 1380.92026 · doi:10.1186/1687-1847-2013-94
[13] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[14] Atangana, A.; Secer, A., A Note on fractional order derivatives and table of fractional derivatives of some special functions, Abstract and Applied Analysis, 2013 (2013) · Zbl 1276.26010 · doi:10.1155/2013/279681
[15] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002
[16] Atangana, A.; Kilicman, A., Analytical solutions of the space-time fractional derivative of advection dispersion equation, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.35058 · doi:10.1155/2013/853127
[17] Yang, X.-J.; Baleanu, D.; Tenreiro Machado, J. A., Systems of navier-stokes equations on cantor sets, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.76047 · doi:10.1155/2013/769724
[18] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics. Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures, 378, 291-348 (1997), Vienna, Austria: Springer, Vienna, Austria · Zbl 0917.73004
[19] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics, 172, 1, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[20] Zhang, Y., A finite difference method for fractional partial differential equation, Applied Mathematics and Computation, 215, 2, 524-529 (2009) · Zbl 1177.65198 · doi:10.1016/j.amc.2009.05.018
[21] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, Journal of Computational Physics, 213, 1, 205-213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[22] Chen, C. M.; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, Journal of Computational Physics, 227, 2, 886-897 (2007) · Zbl 1165.65053 · doi:10.1016/j.jcp.2007.05.012
[23] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM Journal on Numerical Analysis, 42, 5, 1862-1874 (2005) · Zbl 1119.65379 · doi:10.1137/030602666
[24] Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Vinagre Jara, B. M., Matrix approach to discrete fractional calculus II: partial fractional differential equations, Journal of Computational Physics, 228, 8, 3137-3153 (2009) · Zbl 1160.65308 · doi:10.1016/j.jcp.2009.01.014
[25] Hanert, E., On the numerical solution of space-time fractional diffusion models, Computers and Fluids, 46, 1, 33-39 (2011) · Zbl 1305.65212 · doi:10.1016/j.compfluid.2010.08.010
[26] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM Journal on Numerical Analysis, 47, 3, 1760-1781 (2009) · Zbl 1204.26013 · doi:10.1137/080730597
[27] Lin, R.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Applied Mathematics and Computation, 212, 2, 435-445 (2009) · Zbl 1171.65101 · doi:10.1016/j.amc.2009.02.047
[28] Crank, J.; Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proceedings of the Cambridge Philosophical Society, 43, 1, 50-67 (1947) · Zbl 0029.05901 · doi:10.1017/S0305004100023197
[29] Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numerical Algorithms, 36, 1, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[30] Li, C. P.; Tao, C. X., On the fractional Adams method, Computers and Mathematics with Applications, 58, 8, 1573-1588 (2009) · Zbl 1189.65142 · doi:10.1016/j.camwa.2009.07.050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.