×

Solutions of fractional Konopelchenko-Dubrovsky and Nizhnik-Novikov-Veselov equations using a generalized fractional subequation method. (English) Zbl 1470.35401

Summary: A new generalized fractional subequation method based on the relationship of fractional coupled equations is proposed. This method is applied to the space-time fractional coupled Konopelchenko-Dubrovsky equations and Nizhnik-Novikov-Veselov equations. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions, and rational solutions. It is observed that the proposed approach provides a simple and reliable tool for solving many other fractional coupled differential equations.

MSC:

35R11 Fractional partial differential equations
35C05 Solutions to PDEs in closed form
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198, xxiv+340 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[2] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339, 1, 77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[3] Kolwankar, K. M.; Gangal, A. D., Local fractional Fokker-Planck equation, Physical Review Letters, 80, 2, 214-217 (1998) · Zbl 0945.82005 · doi:10.1103/PhysRevLett.80.214
[4] Wu, G. C., A fractional variational iteration method for solving fractional nonlinear differential equations, Computers & Mathematics with Applications, 61, 8, 2186-2190 (2011) · Zbl 1219.65085 · doi:10.1016/j.camwa.2010.09.010
[5] Sun, H. G.; Chen, W., Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence, Science in China, Series E, 52, 3, 680-683 (2009) · Zbl 1386.76090 · doi:10.1007/s11431-009-0050-3
[6] Chen, W.; Sun, H. G., Multiscale statistical model of fully-developed turbulence particle accelerations, Modern Physics Letters B, 23, 3, 449-452 (2009) · Zbl 1386.76089 · doi:10.1142/S021798490901862X
[7] Cresson, J., Scale calculus and the Schrödinger equation, Journal of Mathematical Physics, 44, 11, 4907-4938 (2003) · Zbl 1062.39022 · doi:10.1063/1.1618923
[8] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Computers & Mathematics with Applications, 51, 9-10, 1367-1376 (2006) · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[9] Wang, S. W.; Xu, M. Y., Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear Analysis. Real World Applications, 10, 2, 1087-1096 (2009) · Zbl 1167.76311 · doi:10.1016/j.nonrwa.2007.11.027
[10] Jiang, X. Y.; Xu, M. Y., The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems, Physica A, 389, 17, 3368-3374 (2010) · doi:10.1016/j.physa.2010.04.023
[11] Liu, Y.-Q.; Ma, J.-H., Exact solutions of a generalized multi-fractional nonlinear diffusion equation in radical symmetry, Communications in Theoretical Physics, 52, 5, 857-861 (2009) · Zbl 1182.35067 · doi:10.1088/0253-6102/52/5/20
[12] Ma, J. H.; Liu, Y. Q., Exact solutions for a generalized nonlinear fractional Fokker-Planck equation, Nonlinear Analysis. Real World Applications, 11, 1, 515-521 (2010) · Zbl 1181.35293 · doi:10.1016/j.nonrwa.2009.01.006
[13] Liu, Y. Q., Approximate solutions of fractional nonlinear equations using homotopy perturbation transformation method, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.65136 · doi:10.1155/2012/752869
[14] Liu, Y. Q., Study on space-time fractional nonlinear biological equation in radial symmetry, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1299.35301 · doi:10.1155/2013/654759
[15] Liu, Y. Q., Variational homotopy perturbation method for solving fractional initial boundary value problems, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.65191 · doi:10.1155/2012/727031
[16] Ghany, H. A.; Mohammed, M. S., White noise functional solutions for Wick-type stochastic fractional KdV-Burgers-Kuramoto equations, Chinese Journal of Physics, 50, 4, 619-627 (2012)
[17] Wang, M. L., Solitary wave solutions for variant Boussinesq equations, Physics Letters A, 199, 3-4, 169-172 (1995) · Zbl 1020.35528 · doi:10.1016/0375-9601(95)00092-H
[18] Zhang, S.; Zhang, H.-Q., Fractional sub-equation method and its applications to nonlinear fractional PDEs, Physics Letters A, 375, 7, 1069-1073 (2011) · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[19] Jafari, H.; Tajadodi, H.; Kadkhoda, N.; Baleanu, D., Fractional sub-equation method for Cahn-Hilliard and Klein-Gordon equations, Abstract and Applied Analysis, 2012 (2013) · Zbl 1308.35322 · doi:10.1155/2013/587179
[20] Tang, B.; He, Y.; Wei, L.; Zhang, X., A generalized fractional sub-equation method for fractional differential equations with variable coefficients, Physics Letters A, 376, 38-39, 2588-2590 (2012) · Zbl 1266.34014 · doi:10.1016/j.physleta.2012.07.018
[21] Guo, S. M.; Mei, L. Q.; Li, Y.; Sun, Y., The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Physics Letters A, 376, 4, 407-411 (2012) · Zbl 1255.37022 · doi:10.1016/j.physleta.2011.10.056
[22] Zhao, J. P.; Tang, B.; Kumar, S.; Hou, Y. R., The extended fractional subequation method for nonlinear fractional differential equations, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.35272 · doi:10.1155/2012/924956
[23] Ghany, H. A., Exact solutions for stochastic generalized hirota-satsuma coupled KdV equations, Chinese Journal of Physics, 49, 4, 926-940 (2011)
[24] Ghany, A. H.; El Bab, A. S. O.; Zabel, A. M.; Hyder, A.-A., The fractional coupled Kdv equations: exact solutions and white noise functional approach, Chinese Physics B, 22, 8 · doi:10.1088/1674-1056/22/8/080501
[25] Zhang, S., Exp-function method for Riccati equation and new exact solutions with two arbitrary functions of \((2 + 1)\)-dimensional Konopelchenko-Dubrovsky equations, Applied Mathematics and Computation, 216, 5, 1546-1552 (2010) · Zbl 1189.35299 · doi:10.1016/j.amc.2010.03.005
[26] Shin, B.-C.; Darvishi, M. T.; Barati, A., Some exact and new solutions of the Nizhnik-Novikov-Vesselov equation using the Exp-function method, Computers & Mathematics with Applications, 58, 11-12, 2147-2151 (2009) · Zbl 1189.35291 · doi:10.1016/j.camwa.2009.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.