×

An alternating direction method for mixed Gaussian plus impulse noise removal. (English) Zbl 1470.94059

Summary: A combined total variation and high-order total variation model is proposed to restore blurred images corrupted by impulse noise or mixed Gaussian plus impulse noise. We attack the proposed scheme with an alternating direction method of multipliers (ADMM). Numerical experiments demonstrate the efficiency of the proposed method and the performance of the proposed method is competitive with the existing state-of-the-art methods.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
65K10 Numerical optimization and variational techniques

Software:

RecPF
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Andrews, H.; Hunt, B., Digital Image Restoration (1977), Upper Saddle River, NJ, USA: Prentice-Hall, Upper Saddle River, NJ, USA
[2] Bovik, A., Handbook of Image and Video Processing (2000), Acasemic Press · Zbl 0967.68155
[3] Huang, Y. M.; Ng, M. K.; Wen, Y. W., Fast image restoration methods for impulse and Gaussian noises removal, IEEE Signal Processing Letters, 16, 457-460 (2009)
[4] Cai, J.-F.; Chan, R. H.; Nikolova, M., Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise, Inverse Problems and Imaging, 2, 2, 187-204 (2008) · Zbl 1154.94306
[5] Cai, J.-F.; Chan, R. H.; Nikolova, M., Fast two-phase image deblurring under impulse noise, Journal of Mathematical Imaging and Vision, 36, 1, 46-53 (2010)
[6] Li, B.; Liu, Q. S.; Xu, J. W.; Luo, X. J., A new method for removing mixed noises, Science China Information Sciences, 54, 51-59 (2011) · Zbl 1216.94013
[7] Xiao, Y.; Zeng, T. Y.; Yu, J.; Ng, M. K., Restoration of images corrupted by mixed Gaussian-impulse noise via \(l_1 - l_0\) minimization, Pattern Recognition, 44, 1708-1720 (2011) · Zbl 1218.68191
[8] Rodríguez, P.; Rojas, R.; Wohlberg, B., Mixed Gaissian-impulse noise restoration via total variation, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Process
[9] Li, Y.-R.; Shen, L.; Dai, D.-Q.; Suter, B. W., Framelet algorithms for de-blurring images corrupted by impulse plus Gaussian noise, IEEE Transactions on Image Processing, 20, 7, 1822-1837 (2011) · Zbl 1372.94153
[10] Esedoglu, S.; Shen, J., Digital inpainting based on the Mumford-Shah-Euler image model, European Journal of Applied Mathematics, 13, 4, 353-370 (2002) · Zbl 1017.94505
[11] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[12] Lysaker, M.; Lundervold, A.; Tai, X. C., Noise removal using fourth-order partial differential equation with applications to medical magetic resonace images in space and time, IEEE Transactions on Image Processing, 12, 1579-1590 (2003) · Zbl 1286.94020
[13] You, Y.-L.; Kaveh, M., Fourth-order partial differential equations for noise removal, IEEE Transactions on Image Processing, 9, 10, 1723-1730 (2000) · Zbl 0962.94011
[14] Lysaker, M.; Tai, X. C., Iterative image restoration combining total variation minimization and a second-order functional, International Journal of Computer Vision, 66, 5-18 (2006) · Zbl 1286.94021
[15] Eckstein, J.; Bertsekas, D. P., On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55, 3, 293-318 (1992) · Zbl 0765.90073
[16] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Computers & Mathematics with Applications, 2, 17-40 (1976) · Zbl 0352.65034
[17] He, B.; Tao, M.; Yuan, X., Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22, 2, 313-340 (2012) · Zbl 1273.90152
[18] Kontogiorgis, S.; Meyer, R. R., A variable-penalty alternating directions method for convex optimization, Mathematical Programming, 83, 1, 29-53 (1998) · Zbl 0920.90118
[19] Hwang, H.; Haddad, R. A., Adaptive median filter: new algorithms and results, IEEE Transactions on Image Process, 3, 499-502 (1995)
[20] Ko, S. J.; Lee, Y. H., Center weighted median filters and their applications to image enhancement, IEEE Transactions on Image Process, 42, 984-993 (1991)
[21] Nikolova, M., Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers, SIAM Journal on Numerical Analysis, 40, 3, 965-994 (2002) · Zbl 1018.49025
[22] Nikolova, M., A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20, 1-2, 99-120 (2004) · Zbl 1366.94065
[23] Goldstein, T.; Osher, S., The split Bregman method for \(L 1\)-regularized problems, SIAM Journal on Imaging Sciences, 2, 2, 323-343 (2009) · Zbl 1177.65088
[24] Wang, Y.; Yang, J.; Yin, W.; Zhang, Y., A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1, 3, 248-272 (2008) · Zbl 1187.68665
[25] Chambolle, A., An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20, 1-2, 89-97 (2004) · Zbl 1366.94048
[26] Bioucas-Dias, J. M.; Figueiredo, M. A. T., Multiplicative noise removal using variable splitting and constrained optimization, IEEE Transactions on Image Processing, 19, 7, 1720-1730 (2010) · Zbl 1371.94055
[27] Huang, Y.-M.; Ng, M. K.; Wen, Y.-W., A new total variation method for multiplicative noise removal, SIAM Journal on Imaging Sciences, 2, 1, 20-40 (2009) · Zbl 1187.68655
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.