Munoz-Pacheco, Jesus Manuel; Gómez-Pavón, Luz del Carmen; Félix-Beltrán, Olga Guadalupe; Luis-Ramos, Arnulfo Determining the Lyapunov spectrum of continuous-time 1D and 2D multiscroll chaotic oscillators via the solution of \(m\)-PWL variational equations. (English) Zbl 1470.34125 Abstr. Appl. Anal. 2013, Article ID 851970, 11 p. (2013). Summary: An algorithm to compute the Lyapunov exponents of piecewise linear function-based multidirectional multiscroll chaotic oscillators is reported. Based on the \(m\) regions in the piecewise linear functions, the suggested algorithm determines the individual expansion rate of Lyapunov exponents from \(m\)-piecewise linear variational equations and their associated \(m\)-Jacobian matrices whose entries remain constant during all computation cycles. Additionally, by considering OpAmp-based chaotic oscillators, we study the impact of two analog design procedures on the magnitude of Lyapunov exponents. We focus on analyzing variations of both frequency bandwidth and voltage/current dynamic range of the chaotic signals at electronic system level. As a function of the design parameters, a renormalization factor is proposed to estimate correctly the Lyapunov spectrum. Numerical simulation results in a double-scroll type chaotic oscillator and complex chaotic oscillators generating multidirectional multiscroll chaotic attractors on phase space confirm the usefulness of the reported algorithm. Cited in 3 Documents MSC: 34C28 Complex behavior and chaotic systems of ordinary differential equations 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Strogatz, S. H., Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (2001), New York, NY, USA: Westview Press, New York, NY, USA [2] Yu, H.; Cai, G.; Li, Y., Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dynamics, 67, 3, 2171-2182 (2012) · Zbl 1242.91225 · doi:10.1007/s11071-011-0137-9 [3] EtehadTavakol, M.; Ng, E. Y. K.; Lucas, C.; Sadri, S.; Ataei, M., Nonlinear analysis using Lyapunov exponents in breast thermograms to identify abnormal lesions, Infrared Physics and Technology, 55, 4, 345-352 (2012) · doi:10.1016/j.infrared.2012.02.007 [4] Parker, T. S.; Chua, L. O., Practical Numerical Algorithms for Chaotic Systems (1992), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-1-4612-3486-9 [5] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 3, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9 [6] Lü, J.; Chen, G., Generating multiscroll chaotic attractors: theories, methods and applications, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16, 4, 775-858 (2006) · Zbl 1097.94038 · doi:10.1142/S0218127406015179 [7] Lü, J.; Han, F.; Yu, X.; Chen, G., Generating 3-D multi-scroll chaotic attractors: a hysteresis series switching method, Automatica, 40, 10, 1677-1687 (2004) · Zbl 1162.93353 · doi:10.1016/j.automatica.2004.06.001 [8] Wang, C. H.; Xu, H.; Yu, F., A novel approach for constructing high-order Chua’s circuit with multi-directional multi-scroll chaotic attractors, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23, 2 (2013) · Zbl 1270.34141 · doi:10.1142/S0218127413500223 [9] Munoz-Pacheco, J. M.; Tlelo-Cuautle, E., Electronic Design Automation of Multi-Scroll Chaos Generators (2010), Dubai, UAE: Bentham Sciences Publishers, Dubai, UAE [10] Han, F.; Lü, J.; Yu, X.; Chen, G.; Feng, Y., Generating multi-scroll chaotic attractors via a linear second-order hysteresis system, Dynamics of Continuous, Discrete & Impulsive Systems B, 12, 1, 95-110 (2005) · Zbl 1117.34044 [11] Zhang, Z.; Chen, G., Liquid mixing enhancement by chaotic perturbations in stirred tanks, Chaos, Solitons and Fractals, 36, 1, 144-149 (2008) · doi:10.1016/j.chaos.2006.06.024 [12] Volos, C. K.; Kyprianidis, I. M.; Stouboulos, I. N., A chaotic path planning generator for autonomous mobile robots, Robotics and Autonomous Systems, 60, 4, 651-656 (2012) · doi:10.1016/j.robot.2012.01.001 [13] Muñoz-Pacheco, J. M.; Zambrano-Serrano, E.; Félix-Belt\'ran, O.; Gómez-Pavón, L. C.; Luis-Ramos, A., Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems, Nonlinear Dynamics, 70, 2, 1633-1643 (2012) · doi:10.1007/s11071-012-0562-4 [14] Sun, Y.-J., DII-based linear feedback control design for practical synchronization of chaotic systems with uncertain input nonlinearity and application to secure communication, Abstract and Applied Analysis, 2012 (2012) · Zbl 1255.93065 · doi:10.1155/2012/369267 [15] Chen, D.; Sun, Z.; Ma, X.; Chen, L., Circuit implementation and model of a new multi-scroll chaotic system, International Journal of Circuit Theory and Applications (2012) · doi:10.1002/cta.1860 [16] Munoz-Pacheco, J. M.; Campos-López, W.; Tlelo-Cuautle, E.; Sánchez-López, C., OpAmp-, CFOA- and OTA-based configurations to design multi-scroll chaotic oscillators, Trends in Applied Sciences Research, 7, 2, 168-174 (2012) · doi:10.3923/tasr.2012.168.174 [17] Jung, J.; Lee, J.; Song, H., Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics, Chaos, 21, 1 (2011) · doi:10.1063/1.3548064 [18] Gopakumar, K.; Premlet, B.; Gopchandran, K. G., Chua’s oscillator in integrated circuit form with inbuilt control option, Journal of Circuits, Systems and Computers, 20, 8, 1591-1604 (2011) · doi:10.1142/S0218126611008079 [19] Trejo-Guerra, R.; Tlelo-Cuautle, E.; Jiménez-Fuentes, J. M.; Sánchez-López, C.; Muñoz-Pacheco, J. M.; Espinosa-Flores-Verdad, G.; Rocha-Pérez, J. M., Integrated circuit generating 3- and 5-scroll attractors, Communications in Nonlinear Science and Numerical Simulation, 17, 11, 4328-4335 (2012) · doi:10.1016/j.cnsns.2012.01.029 [20] Tlelo-Cuautle, E.; Muñoz-Pacheco, J. M.; Martínez-Carballido, J., Frequency scaling simulation of Chua’s circuit by automatic determination and control of step-size, Applied Mathematics and Computation, 194, 2, 486-491 (2007) · Zbl 1193.37142 · doi:10.1016/j.amc.2007.04.052 [21] Zelinka, I.; Chen, G.; Celikovsky, S., Chaos synthesis by means of evolutionary algorithms, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 18, 4, 911-942 (2008) · Zbl 1147.37328 · doi:10.1142/S021812740802077X [22] de la Fraga, L. G.; Tlelo-Cuautle, E.; Carbajal-Gómez, V. H.; Munoz-Pacheco, J. M., On maximizing positive Lyapunov exponents in a chaotic oscillator with heuristics, Revista Mexicana de Física, 58, 3, 274-281 (2012) [23] Ramasubramanian, K.; Sriram, M. S., A comparative study of computation of Lyapunov spectra with different algorithms, Physica D, 139, 1-2, 72-86 (2000) · Zbl 0947.34041 · doi:10.1016/S0167-2789(99)00234-1 [24] Dieci, L.; Van Vleck, E. S., On the error in computing Lyapunov exponents by QR methods, Numerische Mathematik, 101, 4, 619-642 (2005) · Zbl 1083.65069 · doi:10.1007/s00211-005-0644-z [25] Chen, Z.-M.; Djidjeli, K.; Price, W. G., Computing Lyapunov exponents based on the solution expression of the variational system, Applied Mathematics and Computation, 174, 2, 982-996 (2006) · Zbl 1090.65142 · doi:10.1016/j.amc.2005.05.016 [26] Trejo-Guerra, R.; Tlelo-Cuautle, E.; Muñoz-Pacheco, J. M.; Sánchez-López, C.; Cruz-Hernández, C., On the relation between the number of scrolls and the lyapunov exponents in PWL-functions-based n-scroll chaotic oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 11, 11, 903-910 (2010) [27] Stachowiak, T.; Szydlowski, M., A differential algorithm for the Lyapunov spectrum, Physica D, 240, 16, 1221-1227 (2011) · Zbl 1223.37108 · doi:10.1016/j.physd.2011.04.007 [28] Razjouyan, J.; Gharibzadeh, S.; Fallah, A.; Khayat, O.; Ghergherehchi, M.; Afarideh, H.; Moghaddasi, M., A neuro-fuzzy based model for accurate estimation of the Lyapunov exponents of an unknown dynamical system, International Journal of Bifurcation and Chaos, 22, 3 (2012) · Zbl 1270.37023 · doi:10.1142/S0218127412500435 [29] Cannas, B.; Pisano, F., A fast algorithm for Lyapunov exponents calculation in piecewise linear systems, Proceedings of the AIP Conference [30] Munoz-Pacheco, J. M.; Tlelo-Cuautle, E., Automatic synthesis of 2D-n-scrolls chaotic systems by behavioral modeling, Journal of Applied Research and Technology, 7, 1, 5-14 (2009) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.