Cai, Yongli; Chi, Dongxuan; Liu, Wenbin; Wang, Weiming Stationary patterns of a cross-diffusion epidemic model. (English) Zbl 1470.92284 Abstr. Appl. Anal. 2013, Article ID 852698, 10 p. (2013). Summary: We investigate the complex dynamics of cross-diffusion \(S I\) epidemic model. We first give the conditions of the local and global stability of the nonnegative constant steady states, which indicates that the basic reproduction number determines whether there is an endemic outbreak or not. Furthermore, we prove the existence and nonexistence of the positive nonconstant steady states, which guarantees the existence of the stationary patterns. Cited in 1 Document MSC: 92D30 Epidemiology 35B35 Stability in context of PDEs 35K51 Initial-boundary value problems for second-order parabolic systems 35K57 Reaction-diffusion equations PDF BibTeX XML Cite \textit{Y. Cai} et al., Abstr. Appl. Anal. 2013, Article ID 852698, 10 p. (2013; Zbl 1470.92284) Full Text: DOI References: [1] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical theory of epidemics-I, Bulletin of Mathematical Biology, 53, 1-2, 33-55 (1991) · Zbl 0005.30501 [2] Ma, Z.; Zhou, Y.; Wu, J., Modeling and Dynamics of Infectious Diseases (2009), Higher Education Press · Zbl 1180.92081 [3] Holmes, E. E.; Lewis, M. A.; Banks, J. E.; Veit, R. R., Partial differential equations in ecology: spatial interactions and population dynamics, Ecology, 75, 1, 17-29 (1994) [4] Okubo, A.; Levin, S. A., Diffusion and Ecological Problems: Modern Perspectives. Diffusion and Ecological Problems: Modern Perspectives, Interdisciplinary Applied Mathematics, 14, xx+467 (2001), New York, NY, USA: Springer, New York, NY, USA · Zbl 1027.92022 [5] Neuhauser, C., Mathematical challenges in spatial ecology, Notices of the American Mathematical Society, 48, 11, 1304-1314 (2001) · Zbl 1128.92328 [6] Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J., Travelling waves and spatial hierarchies in measles epidemics, Nature, 414, 6865, 716-723 (2001) [7] Murray, J. D., Mathematical Biology. II. Mathematical Biology. II, Interdisciplinary Applied Mathematics, 18, xxvi+811 (2003), New York, NY, USA: Springer, New York, NY, USA [8] Rass, L.; Radcliffe, J., Spatial Deterministic Epidemics. Spatial Deterministic Epidemics, Mathematical Surveys and Monographs, 102, x+261 (2003), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1018.92028 [9] Cantrell, R. S.; Cosner, C., Spatial Ecology via Reaction-Diffusion Equations. Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, xvi+411 (2003), Chichester, UK: John Wiley & Sons, Chichester, UK · Zbl 05022052 [10] Lloyd, A. L.; Jansen, V. A. A., Spatiotemporal dynamics of epidemics: synchrony in metapopulation models, Mathematical Biosciences, 188, 1-16 (2004) · Zbl 1036.92029 [11] Van Ballegooijen, W. M.; Boerlijst, M. C., Emergent trade-offs and selection for outbreak frequency in spatial epidemics, Proceedings of the National Academy of Sciences of the United States of America, 101, 52, 18246-18250 (2004) [12] Mulone, G.; Straughan, B.; Wang, W., Stability of epidemic models with evolution, Studies in Applied Mathematics, 118, 2, 117-132 (2007) [13] Malchow, H.; Petrovskii, S. V.; Venturino, E., Spatiotemporal Patterns in Ecology Andepidemiology-Theory, Models, and Simulation. Spatiotemporal Patterns in Ecology Andepidemiology-Theory, Models, and Simulation, Mathematical and Computational Biology Series (2008), Boca Raton, Fla, USA: Chapman & Hall/CRC, Boca Raton, Fla, USA · Zbl 1298.92004 [14] Upadhyay, R. K.; Kumari, N.; Rao, V. S. H., Modeling the spread of bird flu and predicting outbreak diversity, Nonlinear Analysis: Real World Applications, 9, 4, 1638-1648 (2008) · Zbl 1154.92324 [15] Wang, K.; Wang, W.; Song, S., Dynamics of an HBV model with diffusion and delay, Journal of Theoretical Biology, 253, 1, 36-44 (2008) · Zbl 1398.92257 [16] Sun, G.-Q.; Jin, Z.; Liu, Q.-X.; Li, L., Spatial pattern in an epidemic system with cross-diffusion of the susceptible, Journal of Biological Systems, 17, 1, 141-152 (2009) · Zbl 1364.92053 [17] Bendahmane, M.; Saad, M., Mathematical analysis and pattern formation for a partial immune system modeling the spread of an epidemic disease, Acta Applicandae Mathematicae, 115, 1, 17-42 (2011) · Zbl 1252.35053 [18] Cai, Y.; Wang, W., Spatiotemporal dynamics of a reaction-diffusion epidemic model with nonlinear incidence rate, Journal of Statistical Mechanics: Theory and Experiment, 2011, 2 (2011) [19] Wang, W.; Lin, Y.; Wang, H.; Liu, H.; Tan, Y., Pattern selection in an epidemic model with self and cross diffusion, Journal of Biological Systems, 19, 1, 19-31 (2011) · Zbl 1404.92206 [20] Wang, W.; Cai, Y.; Wu, M.; Wang, K.; Li, Z., Complex dynamics of a reaction-diffusion epidemic model, Nonlinear Analysis: Real World Applications, 13, 5, 2240-2258 (2012) · Zbl 1327.92069 [21] Cai, Y.; Liu, W.; Wang, Y.; Wang, W., Complex dynamics of a diffusive epidemic model with strong Allee effect, Nonlinear Analysis: Real World Applications, 14, 4, 1907-1920 (2013) · Zbl 1274.92009 [22] Lou, Y.; Ni, W.-M., Diffusion, self-diffusion and cross-diffusion, Journal of Differential Equations, 131, 1, 79-131 (1996) · Zbl 0867.35032 [23] Kerner, E. H., Further considerations on the statistical mechanics of biological associations, The Bulletin of Mathematical Biophysics, 21, 2, 217-255 (1959) [24] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, Journal of Theoretical Biology, 79, 1, 83-99 (1979) [25] Wang, M., Non-constant positive steady states of the Sel’kov model, Journal of Differential Equations, 190, 2, 600-620 (2003) · Zbl 1163.35362 [26] Pang, P. Y. H.; Wang, M., Strategy and stationary pattern in a three-species predator-prey model, Journal of Differential Equations, 200, 2, 245-273 (2004) · Zbl 1106.35016 [27] Wang, M., Stationary patterns of strongly coupled prey-predator models, Journal of Mathematical Analysis and Applications, 292, 2, 484-505 (2004) · Zbl 1160.35325 [28] Wang, M., Stationary patterns caused by cross-diffusion for a three-species prey-predator model, Computers & Mathematics with Applications, 52, 5, 707-720 (2006) · Zbl 1121.92069 [29] Peng, R.; Shi, J.; Wang, M., Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM Journal on Applied Mathematics, 67, 5, 1479-1503 (2007) · Zbl 1210.35268 [30] Peng, R.; Shi, J.; Wang, M., On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21, 7, 1471-1488 (2008) · Zbl 1148.35094 [31] Peng, R.; Shi, J., Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: strong interaction case, Journal of Differential Equations, 247, 3, 866-886 (2009) · Zbl 1169.35328 [32] Yi, F.; Wei, J.; Shi, J., Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, Journal of Differential Equations, 246, 5, 1944-1977 (2009) · Zbl 1203.35030 [33] Li, B.; Wang, M., Stationary patterns of the stage-structured predator-prey model with diffusion and cross-diffusion, Mathematical and Computer Modelling, 54, 5-6, 1380-1393 (2011) · Zbl 1228.35258 [34] Levin, S. A.; Segel, L. A., Pattern generation in space and aspect, SIAM Review, 27, 1, 45-67 (1985) · Zbl 0576.92008 [35] Barthélemy, M.; Barrat, A.; Pastor-Satorras, R.; Vespignani, A., Dynamical patterns of epidemic outbreaks in complex heterogeneous networks, Journal of Theoretical Biology, 235, 2, 275-288 (2005) · Zbl 1445.92262 [36] Colizza, V.; Vespignani, A., Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations, Journal of Theoretical Biology, 251, 3, 450-467 (2008) · Zbl 1398.92233 [37] Jepps, O. G.; Bianca, C.; Rondoni, L., Onset of diffusive behavior in confined transport systems, Chaos, 18, 1 (2008) [38] Cannon, J. R.; Galiffa, D. J., An epidemiology model suggested by yellow fever, Mathematical Methods in the Applied Sciences, 35, 2, 196-206 (2012) · Zbl 1232.92056 [39] Das, K. P.; Chattopadhyay, J., Role of environmental disturbance in an eco-epidemiological model with disease from external source, Mathematical Methods in the Applied Sciences, 35, 6, 659-675 (2012) · Zbl 1236.92059 [40] Bianca, C., Existence of stationary solutions in kinetic models with gaussian thermostats, Mathematical Methods in the Applied Sciences, 36, 13, 1768-1775 (2013) · Zbl 1273.35011 [41] Kim, K. I.; Lin, Z.; Zhang, Q., An SIR epidemic model with free boundary, Nonlinear Analysis: Real World Applications, 14, 5, 1992-2001 (2013) · Zbl 1310.92054 [42] Liu, Z., Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Analysis: Real World Applications, 14, 3, 1286-1299 (2013) · Zbl 1261.34040 [43] Qiao, M.; Liu, A.; Foryś, U., Qualitative analysis of the SICR epidemic model with impulsive vaccinations, Mathematical Methods in the Applied Sciences, 36, 6, 695-706 (2013) · Zbl 1318.92049 [44] Wang, L.; Teng, Z.; Jiang, H., Global attractivity of a discrete SIRS epidemic model with standard incidence rate, Mathematical Methods in the Applied Sciences, 36, 5, 601-619 (2013) · Zbl 1278.92032 [45] Wang, S.; Liu, W.; Guo, Z.; Wang, W., Traveling wave solutions in a reaction-diffusion epidemic model, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.35418 [46] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, viii+279 (1983), New York, NY, USA: Springer, New York, NY, USA · Zbl 0516.47023 [47] Kirane, M., Global bounds and asymptotics for a system of reaction-diffusion equations, Journal of Mathematical Analysis and Applications, 138, 2, 328-342 (1989) · Zbl 0681.35045 [48] Henry, D., Geometric Theory of Semilinear Parabolic Equations. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, iv+348 (1981), Berlin, Germany: Springer, Berlin, Germany [49] Melkemi, L.; Mokrane, A. Z.; Youkana, A., On the uniform boundedness of the solutions of systems of reaction-diffusion equations, Electronic Journal of Qualitative Theory of Differential Equations, 24, 1-10 (2005) · Zbl 1090.35095 [50] Daddiouaissa, E. H., Existence of global solutions for a system of reaction-diffusion equations having a triangular matrix, Electronic Journal of Differential Equations, 2008, 141, 1-9 (2008) · Zbl 1167.35397 [51] Nirenberg, L., Topics in Nonlinear Functional Analysis, 6 (2001), AMS Bookstore · Zbl 0992.47023 [52] Lin, C.-S.; Ni, W.-M.; Takagi, I., Large amplitude stationary solutions to a chemotaxis system, Journal of Differential Equations, 72, 1, 1-27 (1988) · Zbl 0676.35030 [53] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 224, xiii+513 (1983), Berlin, Germany: Springer, Berlin, Germany [54] Turing, A. M., The chemical basis of morphogenesis, Philosophical Transactions of The Royal Society of London B, 237, 641, 37-72 (1952) · Zbl 1403.92034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.