Khajohnsaksumeth, N.; Wiwatanapataphee, B.; Wu, Y. H. The effect of boundary slip on the transient pulsatile flow of a modified second-grade fluid. (English) Zbl 1470.76124 Abstr. Appl. Anal. 2013, Article ID 858597, 13 p. (2013). Summary: We investigate the effect of boundary slip on the transient pulsatile fluid flow through a vessel with body acceleration. The Fahraeus-Lindqvist effect, expressing the fluid behavior near the wall by the Newtonian fluid while in the core by a non-Newtonian fluid, is also taken into account. To describe the non-Newtonian behavior, we use the modified second-grade fluid model in which the viscosity and the normal stresses are represented in terms of the shear rate. The complete set of equations are then established and formulated in a dimensionless form. For a special case of the material parameter, we derive an analytical solution for the problem, while for the general case, we solve the problem numerically. Our subsequent analytical and numerical results show that the slip parameter has a very significant influence on the velocity profile and also on the convergence rate of the numerical solutions. MSC: 76Z05 Physiological flows 76A05 Non-Newtonian fluids 92C35 Physiological flow × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Eringen, A. C., Continuum theory of dense rigid suspensions, Rheologica Acta, 30, 1, 23-32 (1991) · Zbl 0716.76012 · doi:10.1007/BF00366791 [2] Eringen, A. C., A continuum theory of dense suspensions, Zeitschrift für Angewandte Mathematik und Physik, 56, 3, 529-547 (2005) · Zbl 1065.76190 · doi:10.1007/s00033-005-3119-2 [3] Ariman, T.; Turk, M. A.; Sylvester, N. D., Microcontinuum fluid mechanics—a review, International Journal of Engineering Science, 11, 8, 905-930 (1973) · Zbl 0259.76001 · doi:10.1016/0020-7225(73)90038-4 [4] Turk, M. A.; Sylvester, N. D.; Ariman, T., On pulsatile blood flow, Transactions of the Society of Rheology, 17, 1-21 (1973) · Zbl 0356.76080 · doi:10.1122/1.549295 [5] Debnath, L., On a microcontinuum model of pulsatile blood flow, Acta Mechanica, 24, 3-4, 165-177 (1976) · Zbl 0345.76059 · doi:10.1007/BF01190368 [6] Ahmadi, G., A continuum theory of blood flow, Scientia Sinica, 24, 10, 1465-1474 (1981) · Zbl 0478.76139 [7] Majhi, S. N.; Usha, L., Modelling the Fahraeus-Lindqvist effect through fluids of differential type, International Journal of Engineering Science, 26, 5, 503-508 (1988) · Zbl 0637.76139 · doi:10.1016/0020-7225(88)90008-0 [8] Haldar, K.; Andersson, H. I., Two-layered model of blood flow through stenosed arteries, Acta Mechanica, 117, 221-228 (1996) · Zbl 0868.76106 · doi:10.1007/BF01181050 [9] Sankar, D. S.; Yatim, Y., Comparative analysis of mathematical models for blood flow in tapered constricted arteries, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.76142 [10] Majhi, S. N.; Nair, V. R., Pulsatile flow of third grade fluids under body acceleration-Modelling blood flow, International Journal of Engineering Science, 32, 5, 839-846 (1994) · Zbl 0925.76975 · doi:10.1016/0020-7225(94)90064-7 [11] Massoudi, M.; Phuoc, T. X., Pulsatile flow of blood using a modified second-grade fluid model, Computers & Mathematics with Applications, 56, 1, 199-211 (2008) · Zbl 1145.76477 · doi:10.1016/j.camwa.2007.07.018 [12] Slattery, J. C., Advanced Transport Phenomena (1999), Cambridge University Press · Zbl 0963.76003 [13] Pit, R.; Hervet, H.; Léger, L., Direct experimental evidence of slip in hexadecane: solid interfaces, Physical Review Letters, 85, 5, 980-983 (2000) · doi:10.1103/PhysRevLett.85.980 [14] Tuinier, R.; Taniguchi, T., Polymer depletion-induced slip near an interface, Journal of Physics Condensed Matter, 17, 2, L9-L14 (2005) · doi:10.1088/0953-8984/17/2/L01 [15] Cao, B.-Y.; Chen, M.; Guo, Z.-Y., Velocity slip of liquid flow in nanochannels, Acta Physica Sinica, 55, 10, 5305-5310 (2006) [16] Szalmas, L., Slip-flow boundary condition for straight walls in thelattice Boltzmann model, Physical Review E, 7306, 6, article 6710 (2006) [17] Pascal, J. P., Instability of power-law fluid flow down a porous incline, Journal of Non-Newtonian Fluid Mechanics, 133, 2-3, 109-120 (2006) · Zbl 1195.76190 · doi:10.1016/j.jnnfm.2005.11.007 [18] Sahu, K. C.; Valluri, P.; Spelt, P. D. M.; Matar, O. K., Linear instability of pressure-driven channel flow of a Newtonian and a Herschel-Bulkley fluid, Physics of Fluids, 20, 10 (2008) · Zbl 1182.76652 · doi:10.1063/1.3002912 [19] Xu, J.; Li, Y., Boundary conditions at the solid-liquid surface over the multiscale channel size from nanometer to micron, International Journal of Heat and Mass Transfer, 50, 13-14, 2571-2581 (2007) · Zbl 1119.80365 · doi:10.1016/j.ijheatmasstransfer.2006.11.031 [20] Zhu, Y.; Granick, S., Rate-dependent slip of Newtonian liquid at smooth surfaces, Physical Review Letters, 87, 9, 961051-961054 (2001) [21] Wu, Y. H.; Wiwatanapataphee, B.; Hu, M., Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary, Physica A, 387, 24, 5979-5990 (2008) · doi:10.1016/j.physa.2008.06.043 [22] Wiwatanapataphee, B.; Wu, Y. H.; Hu, M.; Chayantrakom, K., A study of transient flows of Newtonian fluids through micro-annuals with a slip boundary, Journal of Physics A, 42, 6, article 065206 (2009) · Zbl 1168.76014 · doi:10.1088/1751-8113/42/6/065206 [23] Georgiou, G. C.; Kaoullas, G., Newtonian Flow in a Triangularduct with Slip at the Wall (2013), Mecanica · Zbl 1293.76050 [24] Kaoullas, G.; Georgiou, G. C., Newtonian Poiseuille Flows with Slip and Non-Zero Slip Yield Stress (2013), Mecanica [25] Wu, Y. H.; Wiwatanapataphee, B.; Yu, X., An enthalpy control volume method for transient mass and heat transport with solidification, International Journal of Computational Fluid Dynamics, 18, 7, 577-584 (2004) · Zbl 1116.76393 · doi:10.1080/1061856031000137026 [26] Wiwatanapataphee, B., Modelling of non-Newtonian blood flow through stenosed coronary arteries, Dynamics of Continuous, Discrete & Impulsive Systems B, 15, 5, 619-634 (2008) · Zbl 1155.93013 [27] Amornsamankul, S.; Kaorapapong, K.; Wiwatanapataphee, B., Three-dimensional simulation of femur bone and implant in femoral canal using finite element method, International Journal of Mathematics and Computers in Simulation, 4, 4, 171-178 (2010) [28] Wu, Y. H.; Wiwatanapataphee, B., Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force, Discrete and Continuous Dynamical Systems B, 8, 3, 695-706 (2007) · Zbl 1131.76055 · doi:10.3934/dcdsb.2007.8.695 [29] Lee, H.-B.; Yeo, I. W.; Lee, K.-K., Water flow and slip on NAPL-wetted surfaces of a parallel-walled fracture, Geophysical Research Letters, 34, 19 (2007) · doi:10.1029/2007GL031333 [30] Wiwatanapataphee, B.; Poltem, D.; Wu, Y. H.; Lenbury, Y., Simulation of pulsatile flow of blood in stenosed coronary artery bypass with graft, Mathematical Biosciences and Engineering, 3, 2, 371-383 (2006) · Zbl 1097.92019 · doi:10.3934/mbe.2006.3.371 [31] Man, C.-S.; Sun, Q. K., On the significance of normal stress effects in the flow of glaciers, International Glaciological Society, 268-273 (1987) [32] Man, C.-S., Nonsteady channel flow of ice as a modified second-order fluid with power-law viscosity, Archive for Rational Mechanics and Analysis, 119, 1, 35-57 (1992) · Zbl 0757.76001 · doi:10.1007/BF00376009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.