×

Inequalities similar to Hilbert’s inequality. (English) Zbl 1470.26043

Summary: In the present paper, we establish some new inequalities similar to Hilbert’s type inequalities. Our results provide some new estimates to these types of inequalities.

MSC:

26D15 Inequalities for sums, series and integrals

References:

[1] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1934), Cambridge, Mass, USA: Cambridge University Press, Cambridge, Mass, USA · JFM 60.0169.01
[2] Pachpatte, B. G., On some new inequalities similar to Hilbert’s inequality, Journal of Mathematical Analysis and Applications, 226, 1, 166-179 (1998) · Zbl 0911.26012 · doi:10.1006/jmaa.1998.6043
[3] Handley, G. D.; Koliha, J. J.; Pečarić, J. E., New Hilbert-Pachpatte type integral inequalities, Journal of Mathematical Analysis and Applications, 257, 1, 238-250 (2001) · Zbl 0988.26013 · doi:10.1006/jmaa.2000.7350
[4] Gao, M.; Yang, B., On the extended Hilbert’s inequality, Proceedings of the American Mathematical Society, 126, 3, 751-759 (1998) · Zbl 0935.26011 · doi:10.1090/S0002-9939-98-04444-X
[5] Jichang, K., On new extensions of Hilbert’s integral inequality, Journal of Mathematical Analysis and Applications, 235, 2, 608-614 (1999) · Zbl 0951.26013 · doi:10.1006/jmaa.1999.6373
[6] Yang, B., On new generalizations of Hilbert’s inequality, Journal of Mathematical Analysis and Applications, 248, 1, 29-40 (2000) · Zbl 0970.26009 · doi:10.1006/jmaa.2000.6860
[7] Zhao, C. J., On inverses of disperse and continuous Pachpatte’s inequalities, Acta Mathematica Sinica, 46, 6, 1111-1116 (2003) · Zbl 1046.26014
[8] Zhao, C. J., Generalization on two new Hilbert type inequalities, Journal of Mathematics, 20, 4, 413-416 (2000) · Zbl 0978.26004
[9] Zhao, C. J.; Debnath, L., Some new inverse type Hilbert integral inequalities, Journal of Mathematical Analysis and Applications, 262, 1, 411-418 (2001) · Zbl 0988.26014 · doi:10.1006/jmaa.2001.7595
[10] Handley, G. D.; Koliha, J. J.; Pečarić, J., A Hilbert type inequality, Tamkang Journal of Mathematics, 31, 4, 311-315 (2000) · Zbl 0978.26003
[11] Pachpatte, B. G., Inequalities similar to certain extensions of Hilbert’s inequality, Journal of Mathematical Analysis and Applications, 243, 2, 217-227 (2000) · Zbl 0958.26013 · doi:10.1006/jmaa.1999.6646
[12] Beckenbach, E. F.; Bellman, R., Inequalities, xii+198 (1961), Berlin, Germany: Springer, Berlin, Germany · Zbl 0097.26502
[13] Zhao, C. J.; Pecarić, J.; Leng, G. S., Inverses of some new inequalities similar to Hilbert’s inequalities, Taiwanese Journal of Mathematics, 10, 3, 699-712 (2006) · Zbl 1105.26018
[14] Dragomir, S. S.; Kim, Y.-H., Hilbert-Pachpatte type integral inequalities and their improvement, Journal of Inequalities in Pure and Applied Mathematics, 4, 1, article 16 (2003) · Zbl 1020.26014
[15] Anastassiou, G. A., Hilbert-Pachpatte type fractional integral inequalities, Mathematical and Computer Modelling, 49, 7-8, 1539-1550 (2009) · Zbl 1165.26320 · doi:10.1016/j.mcm.2008.05.059
[16] Jin, J.; Debnath, L., On a Hilbert-type linear series operator and its applications, Journal of Mathematical Analysis and Applications, 371, 2, 691-704 (2010) · Zbl 1205.47011 · doi:10.1016/j.jmaa.2010.06.002
[17] Yang, B., A half-discrete Hilbert-type inequality with a non-homogeneous kernel and two variables, Mediterranean Journal of Mathematics, 10, 2, 677-692 (2013) · Zbl 1275.26047 · doi:10.1007/s00009-012-0213-5
[18] Jichang, K.; Debnath, L., On Hilbert type inequalities with non-conjugate parameters, Applied Mathematics Letters, 22, 5, 813-818 (2009) · Zbl 1167.26315 · doi:10.1016/j.aml.2008.07.010
[19] Tominaga, M., Specht’s ratio in the Young inequality, Scientiae Mathematicae Japonicae, 55, 3, 583-588 (2002) · Zbl 1021.47010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.