Palacios-Quiñonero, Francisco; Vicente-Rodrigo, Jesus; Molina-Hernández, Maria A.; Karimi, Hamid Reza Improved switching strategy for selective harmonic elimination in DC-AC signal generation via pulse-width modulation. (English) Zbl 1470.94113 Abstr. Appl. Anal. 2013, Article ID 870904, 12 p. (2013). Summary: We present an advanced design methodology for pulse-width-modulated (PWM) DC-AC signal generation. Using design methods based on the Walsh transform, AC sinusoidal signals can be approximated by suitable PWM signals. For different AC amplitudes, the switching instants of the PWM signals can be efficiently computed by using appropriate systems of explicit linear equations. However, the equation systems provided by conventional implementations of this approach are typically only valid for a restricted interval of AC amplitudes and, in general, a supervised implementation of several equation systems is necessary to cover the full AC amplitude range. Additionally, obtaining suitable equation systems for designs with a large number of switching instants requires solving a complex optimization problem. In defining the constitutive pulses of a PWM signal, a suitable partition of the time interval is used as a reference system. In the new methodology, pulses are chosen to be symmetric with respect to the partition points, and the switching times are specified by means of switching ratios with respect to the endpoint subintervals. This approach leads to particularly simple Walsh series representations, introduces a remarkable computational simplification, and achieves excellent results in reducing the harmonic distortion. Cited in 1 Document MSC: 94C05 Analytic circuit theory 94A14 Modulation and demodulation in information and communication theory × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bose, B. K., Modern Power Electronics: Evolution, Technology and Applications (1992), New York, NY, USA: IEEE Press, New York, NY, USA [2] Holmes, D. G.; Lipo, T. A., Pulse Width Modulation for Power Converters: Principles and Practice (2003), Hoboken, NJ, USA: John Wiley, Hoboken, NJ, USA [3] Rashid, M. H., Power Electronics Handbook (2001), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA [4] Enjeti, P. N.; Ziogas, P. D.; Lindsay, J. F., Programmed PWM techniques to eliminate harmonics: a critical evaluation, IEEE Transactions on Industry Applications, 26, 2, 302-316 (1990) · doi:10.1109/28.54257 [5] Holtz, J., Pulsewidth modulation—a survey, IEEE Transactions on Industrial Electronics, 39, 5, 410-420 (1992) · doi:10.1109/41.161472 [6] Patel, H. S.; Hoft, R. G., Generalized techniques of harmonic elimination and voltage control in thyristor inverters, part I: harmonic elimination, IEEE Transactions on Industry Applications, IA-9, 3, 310-317 (1973) [7] Patel, H. S.; Hoft, R. G., Generalized techniques of harmonic elimination and voltage control in thyristor inverters, part II: voltage control techniques, IEEE Transactions on Industry Applications, IA-10, 5, 666-673 (1974) [8] Zhang, W.; Chen, W.; Zhang, Q.; Zhang, L., Analyzing of voltage-source selective harmonic elimination inverter, Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA ’11) · doi:10.1109/ICMA.2011.5986268 [9] Chiasson, J. N.; Tolbert, L. M.; McKenzie, K. J.; Du, Z., A complete solution to the harmonic elimination problem, IEEE Transactions on Power Electronics, 19, 2, 491-499 (2004) · doi:10.1109/TPEL.2003.823207 [10] Czarkowski, D.; Chudnovsky, D. V.; Selesnick, I. W., Solving the optimal PWM problem for single-phase inverters, IEEE Transactions on Circuits and Systems I, 49, 4, 465-475 (2002) · Zbl 1368.94183 · doi:10.1109/81.995661 [11] Quesada, I.; Martinez, C.; Raga, C.; Lazaro, A.; Barrado, A.; Vazquez, R.; González, I., Feasible solutions space for the harmonic cancellation technique, Proceedings of the 7th International Conference-Workshop Compatibility and Power Electronics (CPE ’11) · doi:10.1109/CPE.2011.5942242 [12] Salam, Z., An on-line harmonic elimination pulse width modulation scheme for voltage source inverter, Journal of Power Electronics, 10, 1, 43-50 (2010) [13] Butun, E.; Erfidan, T.; Urgun, S., Improved power factor in a low-cost PWM single phase inverter using genetic algorithms, Energy Conversion and Management, 47, 11-12, 1597-1609 (2006) · doi:10.1016/j.enconman.2005.08.010 [14] Dahidah, M. S. A.; Agelidis, V. G.; Rao, M. V., Hybrid genetic algorithm approach for selective harmonic control, Energy Conversion and Management, 49, 2, 131-142 (2008) · doi:10.1016/j.enconman.2007.06.031 [15] Ray, R. N.; Chatterjee, D.; Goswami, S. K., An application of PSO technique for harmonic elimination in a PWM inverter, Applied Soft Computing Journal, 9, 4, 1315-1320 (2009) · doi:10.1016/j.asoc.2009.05.002 [16] Salam, Z.; Bahari, N., Selective harmonics elimination PWM (SHE-PWM) using differential evolution approach, Proceedings of the Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES ’10) and 2010 Power India · doi:10.1109/PEDES.2010.5712375 [17] Sundareswaran, K.; Jayant, K.; Shanavas, T. N., Inverter harmonic elimination through a colony of continuously exploring ants, IEEE Transactions on Industrial Electronics, 54, 5, 2558-2565 (2007) · doi:10.1109/TIE.2007.899846 [18] Walsh, J. L., A closed set of normal orthogonal functions, American Journal of Mathematics, 45, 1, 5-24 (1923) · JFM 49.0293.03 · doi:10.2307/2387224 [19] Beauchamp, K. G., Walsh Functions and Their Applications (1975), London, UK: Academic Press, London, UK · Zbl 0326.42007 [20] Rivlin, T. J.; Saff, E. B.; Walsh, J. L., Selected Papers (2000), New York, NY, USA: Springer, New York, NY, USA · Zbl 0971.01015 [21] Siemens, K. H.; Kitai, R., A nonrecursive equation for the Fourier transform of a Walsh function, IEEE Transactions on Electromagnetic Compatibility, 15, 2, 81-83 (1973) [22] Chen, B. D.; Sun, Y. Y., Waveform synthesis via inverse Walsh transform, International Journal of Electronics, 48, 3, 243-256 (1980) [23] Asumadu, J. A.; Hoft, R. G., Microprocessor-based sinusoidal waveform synthesis using Walsh and related orthogonal functions, IEEE Transactions on Power Electronics, 4, 234-241 (1989) [24] Liang, T. J.; Hoft, R. G., Walsh function method of harmonic elimination, Proceedings of the 8th Annual Conference and Exposition in Applied Power Electronics (APEC’93) [25] Swift, F.; Kamberis, A., A new Walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters, IEEE Transactions on Power Electronics, 8, 2, 170-185 (1993) · doi:10.1109/63.223969 [26] Liang, T.; O’Connell, R. M.; Hoft, R. G., Inverter harmonic reduction using Walsh function harmonic elimination method, IEEE Transactions on Power Electronics, 12, 6, 971-982 (1997) · doi:10.1109/63.641495 [27] Vicente, J.; Pindado, R.; Martinez, I., Selection criteria for the switching intervals in DC-AC converters for harmonic reduction using the Walsh transform, Proceedings of the 10th IEEE International Power Electronics and Motion Control Conference (EPE-PMEC ’02) [28] Vicente, J.; Pindado, R.; Martinez, I., Algorithm optimization for PWM signal generation with selective harmonic elimination using the Walsh transform, Proceedings of the International Conference on Renewable Energy and Power Quality (ICREPQ ’03) [29] Vicente, J.; Pindado, R.; Martinez, I.; Pou, J., A new efficient algorithm for DC-AC PWM waveform generation with full fundamental regulation on a single linear equation set, Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics Society (IECON ’03) · doi:10.1109/IECON.2003.1280339 [30] Vicente, J.; Pindado, R.; Martinez, I., Design guidelines using selective harmonic elimination advanced method for DC-AC PWM with the Walsh transform, Proceedings of the 7th International Conference-Workshop Compatibility and Power Electronics (CPE ’11) · doi:10.1109/CPE.2011.5942235 [31] Khalid, S. B. A.; Aliyu, G.; Mustafa, M. W.; Shareef, H., An improved Walsh function algorithm for use in sinusoidal and nonsinusoidal power components measurement, Journal of Energy, 2013 (2013) · doi:10.1155/2013/807639 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.