Shang, Shaoqiang; Cui, Yunan Ball-covering property in uniformly non-\(l_3^{(1)}\) Banach spaces and application. (English) Zbl 1449.46018 Abstr. Appl. Anal. 2013, Article ID 873943, 7 p. (2013). Summary: This paper shows the following. (1) \(X\) is a uniformly non-\(l_3^{(1)}\) space if and only if there exist two constants \(\alpha, \beta > 0\) such that, for every 3-dimensional subspace \(Y\) of \(X\), there exists a ball-covering \(\mathfrak{B}\) of \(Y\) with \(c(\mathfrak{B}) = 4\) or \(5\) which is \(\alpha\)-off the origin and \(r(\mathfrak{B}) \leq \beta\). (2) If a separable space \(X\) has the Radon-Nikodým property, then \(X^*\) has the ball-covering property. Using this general result, we find sufficient conditions in order that an Orlicz function space has the ball-covering property. Cited in 6 Documents MSC: 46B20 Geometry and structure of normed linear spaces Keywords:ball-covering property; uniformly non-\(l_3^{(1)}\) Banach spaces; Orlicz function space × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Cheng, L., Ball-covering property of Banach spaces, Israel Journal of Mathematics, 156, 111-123 (2006) · Zbl 1139.46016 · doi:10.1007/BF02773827 [2] Cheng, L., Erratum to: ball-covering property of Banach spaces, Israel Journal of Mathematics, 184, 505-507 (2011) · Zbl 1257.46010 · doi:10.1007/s11856-011-0078-5 [3] Cheng, L.; Cheng, Q.; Liu, X., Ball-covering property of Banach spaces that is not preserved under linear isomorphisms, Science in China A, 51, 1, 143-147 (2008) · Zbl 1152.46010 · doi:10.1007/s11425-007-0102-8 [4] Cheng, L.; Shi, H.; Zhang, W., Every Banach space with a \(w\)-separable dual has a \(1 + \varepsilon \)-equivalent norm with the ball covering property, Science in China A, 52, 9, 1869-1874 (2009) · Zbl 1191.46010 · doi:10.1007/s11425-009-0175-7 [5] Cheng, L.; Cheng, Q.; Shi, H., Minimal ball-coverings in Banach spaces and their application, Studia Mathematica, 192, 1, 15-27 (2009) · Zbl 1176.46015 · doi:10.4064/sm192-1-2 [6] Cheng, L. X.; Luo, Z. H.; Liu, X. F.; Zhang, W., Several remarks on ball-coverings of normed spaces, Acta Mathematica Sinica, 26, 9, 1667-1672 (2010) · Zbl 1211.46006 · doi:10.1007/s10114-010-9036-0 [7] Giesy, D. P., On a convexity condition in normed linear spaces, Transactions of the American Mathematical Society, 125, 114-146 (1966) · Zbl 0183.13204 · doi:10.1090/S0002-9947-1966-0205031-7 [8] James, R. C., Uniformly non-square Banach spaces, Annals of Mathematics, 80, 542-550 (1964) · Zbl 0132.08902 · doi:10.2307/1970663 [9] James, R. C., A nonreflexive Banach space that is uniformly nonoctahedral, Israel Journal of Mathematics, 18, 145-155 (1974) · Zbl 0292.46014 · doi:10.1007/BF02756869 [10] Phelps, R. R., Convex Functions, Monotone Operators and Differentiability. Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, 1364 (1989), New York, NY, USA: Springer, New York, NY, USA · Zbl 0658.46035 · doi:10.1007/BFb0089089 [11] Fonf, V. P.; Zanco, C., Covering spheres of Banach spaces by balls, Mathematische Annalen, 344, 4, 939-945 (2009) · Zbl 1179.46015 · doi:10.1007/s00208-009-0336-6 [12] Denker, M.; Hudzik, H., Uniformly non-\(l_n^{(1)}\) Musielak-Orlicz sequence spaces, Proceedings of the Indian Academy of Sciences, 101, 2, 71-86 (1991) · Zbl 0789.46008 [13] Chen, S. T., Geometry of Orlicz spaces, Dissertationes Mathematicae, 356, 1-204 (1996) · Zbl 1089.46500 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.