×

zbMATH — the first resource for mathematics

0-1 test for chaos in a fractional order financial system with investment incentive. (English) Zbl 1420.91559
Summary: A new integer-order chaotic financial system is extended by introducing a simple investment incentive into a three-dimensional chaotic financial system. A four-dimensional fractional-order chaotic financial system is presented by bringing fractional calculus into the new integer-order financial system. By using weighted integral thought, the fractional order derivative’s economics meaning is given. The 0-1 test algorithm and the improved Adams-Bashforth-Moulton predictor-corrector scheme are employed to detect numerically the chaos in the proposed fractional order financial system.

MSC:
91G99 Actuarial science and mathematical finance
26A33 Fractional derivatives and integrals
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N40 Dynamical systems in optimization and economics
91G80 Financial applications of other theories
Software:
FODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chian, A. C.-L.; Rempel, E. L.; Rogers, C., Complex economic dynamics: chaotic saddle, crisis and intermittency, Chaos, Solitons and Fractals, 29, 5, 1194-1218, (2006) · Zbl 1142.91652
[2] Xin, B.; Ma, J.; Gao, Q., The complexity of an investment competition dynamical model with imperfect information in a security market, Chaos, Solitons and Fractals, 42, 4, 2425-2438, (2009) · Zbl 1198.91123
[3] Huang, D.; Li, H., Theory and Method of the Nonlinear Economics, (1993), Chengdu, China: Sichuan University, Chengdu, China
[4] Ma, J.-H.; Chen, Y.-S., Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I), Applied Mathematics and Mechanics, 22, 11, 1240-1251, (2001) · Zbl 1001.91501
[5] Ma, J.-H.; Chen, Y.-S., Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II), Applied Mathematics and Mechanics, 22, 12, 1375-1382, (2001) · Zbl 1143.91341
[6] Ma, J.; Bangura, T., Complexity analysis research of financial and economic system under the condition of three parameters change circumstances, Nonlinear Dynamics, 70, 2313-2326, (2012) · Zbl 1268.34084
[7] Gao, Q.; Ma, J., Chaos and Hopf bifurcation of a finance system, Nonlinear Dynamics, 58, 1-2, 209-216, (2009) · Zbl 1183.91193
[8] Chen, W.-C., Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons and Fractals, 36, 5, 1305-1314, (2008)
[9] Xin, B.-G.; Chen, T.; Liu, Y.-Q., Complexity evolvement of a chaotic fractional-order financial system, Acta Physica Sinica, 60, 4, (2011)
[10] Abd-Elouahab, M. S.; Hamri, N.-E.; Wang, J., Chaos control of a fractional-order financial system, Mathematical Problems in Engineering, 2010, (2010) · Zbl 1195.91185
[11] Pan, I.; Korre, A.; Das, S.; Durucan, S., Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise, Nonlinear Dynamics, 70, 2445-2461, (2012)
[12] Wang, Z.; Huang, X.; Shen, H., Control of an uncertain fractional order economic system via adaptive sliding mode, Neurocomputing, 83, 83-88, (2012)
[13] Mircea, G.; Neamtu, M.; Bundau, O.; Opris, D., Uncertain and stochastic financial models with multiple delays, International Journal of Bifurcation and Chaos, 22, 6, (2012) · Zbl 1270.34190
[14] Xin, B.; Chen, T.; Ma, J., Neimark-sacker bifurcation in a discrete-time financial system, Discrete Dynamics in Nature and Society, 2010, (2010) · Zbl 1195.91189
[15] Chen, W.-C., Dynamics and control of a financial system with time-delayed feedbacks, Chaos, Solitons and Fractals, 37, 4, 1198-1207, (2008) · Zbl 1142.93347
[16] Son, W.-S.; Park, Y.-J., Delayed feedback on the dynamical model of a financial system, Chaos, Solitons and Fractals, 44, 4-5, 208-217, (2011) · Zbl 1219.91083
[17] Ding, Y.; Jiang, W.; Wang, H., Hopf-pitchfork bifurcation and periodic phenomena in nonlinear financial system with delay, Chaos, Solitons & Fractals, 45, 1048-1057, (2012) · Zbl 1264.34072
[18] Yu, H.; Cai, G.; Li, Y., Dynamic analysis and control of a new hyperchaotic finance system, Chaos, Solitons & Fractals, 45, 1048-1057, (2012)
[19] Dinica, M., The real options attached to an investment project, Economia, Seria Management, 14, 511-518, (2011)
[20] Xin, B.; Chen, T.; Liu, Y., Synchronization of chaotic fractional-order WINDMI systems via linear state error feedback control, Mathematical Problems in Engineering, 2010, (2010) · Zbl 1205.93054
[21] Xin, B.; Chen, T.; Liu, Y., Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control, Communications in Nonlinear Science and Numerical Simulation, 16, 11, 4479-4486, (2011) · Zbl 1222.93108
[22] Li, X. C.; Chen, W., Nested meshes for numerical approximation of space fractional differential equations, The European Physical Journal, 193, 1, 221-228, (2011)
[23] Li, X.; Chen, W., Analytical study on the fractional anomalous diffusion in a half-plane, Journal of Physics A, 43, 49, (2010) · Zbl 1205.82108
[24] Chen, S.; Jiang, X., Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus, Physica A, 391, 15, 3865-3874, (2012)
[25] Jiang, X.; Qi, H., Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative, Journal of Physics A, 45, (2012) · Zbl 1339.80006
[26] Deng, W., Numerical algorithm for the time fractional Fokker-Planck equation, Journal of Computational Physics, 227, 2, 1510-1522, (2007) · Zbl 1388.35095
[27] Deng, W., Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Analysis: Theory, Methods and Applications, 72, 3-4, 1768-1777, (2010) · Zbl 1182.26009
[28] Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numerical Algorithms, 36, 1, 31-52, (2004) · Zbl 1055.65098
[29] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 1–4, 3-22, (2002) · Zbl 1009.65049
[30] Gottwald, G. A.; Melbourne, I., A new test for chaos in deterministic systems, Proceedings of the Royal Society A, 460, 2042, 603-611, (2004) · Zbl 1042.37060
[31] Gottwald, G. A.; Melbourne, I., On the implementation of the 0-1 test for chaos, SIAM Journal on Applied Dynamical Systems, 8, 1, 129-145, (2009) · Zbl 1161.37054
[32] Gottwald, G. A.; Melbourne, I., On the validity of the 0-1 test for chaos, Nonlinearity, 22, 6, 1367-1382, (2009) · Zbl 1171.65091
[33] Falconer, I.; Gottwald, G. A.; Melbourne, I.; Wormnes, K., Application of the 0-1 test for chaos to experimental data, SIAM Journal on Applied Dynamical Systems, 6, 2, 395-402, (2007) · Zbl 1210.37059
[34] Devi, S.; Singh, S.; Sharma, A., Deterministic dynamics of the magnetosphere: results of the 0-1 test, Nonlinear Processes in Geophysics, 20, 11-18, (2013)
[35] Litak, G.; Syta, A.; Wiercigroch, M., Identification of chaos in a cutting process by the 0-1 test, Chaos, Solitons and Fractals, 40, 5, 2095-2101, (2009)
[36] Litak, G.; Syta, A.; Budhraja, M.; Saha, L. M., Detection of the chaotic behaviour of a bouncing ball by the 0-1 test, Chaos, Solitons and Fractals, 42, 3, 1511-1517, (2009)
[37] Bernardini, D.; Rega, G.; Litak, G.; Syta, A., Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0-1 test, Journal of Multi-Body Dynamics K, 227, 1, 17-22, (2013)
[38] Sun, K.; Liu, X.; Zhu, C., The 0-1 test algorithm for chaos and its applications, Chinese Physics B, 11, (2010)
[39] Yuan, L.-G.; Yang, Q.-G., A proof for the existence of chaos in diffusively coupled map lattices with open boundary conditions, Discrete Dynamics in Nature and Society, 2011, (2011) · Zbl 1233.91209
[40] Webel, K., Chaos in German stock returns—new evidence from the 0-1 test, Economics Letters, 115, 3, 487-489, (2012)
[41] Zachilas, L.; Psarianos, I. N., Examining the chaotic behavior in dynamical systems by means of the 0-1 test, Journal of Applied Mathematics, 2012, (2012) · Zbl 1243.37060
[42] Xin, B.; Li, Y., Bifurcation and chaos in a price game of irrigation water in a coastal irrigation district, Discrete Dynamics in Nature and Society, 2013, (2013) · Zbl 1264.91041
[43] Vahedi, S.; Noorani, M. S. M., Analysis of a new quadratic 3D chaotic attractor, Abstract and Applied Analysis, 2013, (2013) · Zbl 1383.34065
[44] Krese, B.; Govekar, E., Nonlinear analysis of laser droplet generation by means of 0-1 test for chaos, Nonlinear Dynamics, 67, 3, 2101-2109, (2012)
[45] Kim, Y., Identification of dynamical states in stimulated Izhikevich neuron models by using a 0-1 test, Journal of the Korean Physical Society, 57, 6, 1363-1368, (2010)
[46] Fraser, A. M.; Swinney, H. L., Independent coordinates for strange attractors from mutual information, Physical Review A, 33, 2, 1134-1140, (1986) · Zbl 1184.37027
[47] Yu, Y.; Li, H.-X.; Wang, S.; Yu, J., Dynamic analysis of a fractional-order Lorenz chaotic system, Chaos, Solitons and Fractals, 42, 2, 1181-1189, (2009) · Zbl 1198.37063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.