×

Impulsive boundary value problems for planar Hamiltonian systems. (English) Zbl 1470.34078

Summary: We give an existence and uniqueness theorem for solutions of inhomogeneous impulsive boundary value problem (BVP) for planar Hamiltonian systems. Green’s function that is needed for representing the solutions is obtained and its properties are listed. The uniqueness of solutions is connected to a Lyapunov type inequality for the corresponding homogeneous BVP.

MSC:

34B37 Boundary value problems with impulses for ordinary differential equations
37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems

References:

[1] Nieto, J. J., Basic theory for nonresonance impulsive periodic problems of first order, Journal of Mathematical Analysis and Applications, 205, 2, 423-433 (1997) · Zbl 0870.34009 · doi:10.1006/jmaa.1997.5207
[2] Li, J.; Nieto, J. J.; Shen, J., Impulsive periodic boundary value problems of first-order differential equations, Journal of Mathematical Analysis and Applications, 325, 1, 226-236 (2007) · Zbl 1110.34019 · doi:10.1016/j.jmaa.2005.04.005
[3] Nieto, J. J., Periodic boundary value problems for first-order impulsive ordinary differential equations, Nonlinear Analysis: Theory, Methods & Applications A, 51, 7, 1223-1232 (2002) · Zbl 1015.34010 · doi:10.1016/S0362-546X(01)00889-6
[4] Nieto, J. J., Impulsive resonance periodic problems of first order, Applied Mathematics Letters, 15, 4, 489-493 (2002) · Zbl 1022.34025 · doi:10.1016/S0893-9659(01)00163-X
[5] Cabada, A.; Nieto, J. J.; Franco, D.; Trofimchuk, S. I., A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points, Dynamics of Continuous, Discrete and Impulsive Systems, 7, 1, 145-158 (2000) · Zbl 0953.34020
[6] Li, J.; Shen, J., Periodic boundary value problems for second order differential equations with impulses, Nonlinear Studies, 12, 4, 391-400 (2005) · Zbl 1090.34023
[7] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Analysis: Real World Applications, 10, 2, 680-690 (2009) · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[8] Nieto, J. J., Variational formulation of a damped Dirichlet impulsive problem, Applied Mathematics Letters, 23, 8, 940-942 (2010) · Zbl 1197.34041 · doi:10.1016/j.aml.2010.04.015
[9] Xiao, J.; Nieto, J. J., Variational approach to some damped Dirichlet nonlinear impulsive differential equations, Journal of the Franklin Institute, 348, 2, 369-377 (2011) · Zbl 1228.34048 · doi:10.1016/j.jfranklin.2010.12.003
[10] Galewski, M., On variational impulsive boundary value problems, Central European Journal of Mathematics, 10, 6, 1969-1980 (2012) · Zbl 1280.34030 · doi:10.2478/s11533-012-0084-9
[11] Eloe, P. W.; Henderson, J., A boundary value problem for a system of ordinary differential equations with impulse effects, The Rocky Mountain Journal of Mathematics, 27, 3, 785-799 (1997) · Zbl 0902.34014 · doi:10.1216/rmjm/1181071893
[12] Uğur, Ö.; Akhmet, M. U., Boundary value problems for higher order linear impulsive differential equations, Journal of Mathematical Analysis and Applications, 319, 1, 139-156 (2006) · Zbl 1099.34030 · doi:10.1016/j.jmaa.2005.12.077
[13] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), Singapore: World Scientific, Singapore · Zbl 0837.34003
[14] Liapounoff, A., Problème général de la stabilité du mouvement, Annales de la Faculté des Sciences de Toulouse pour les Sciences Mathématiques et les Sciences Physiques. Série 2, 9, 203-474 (1907) · JFM 38.0738.07
[15] Guseinov, G. Sh.; Kaymakçalan, B., Lyapunov inequalities for discrete linear Hamiltonian systems, Computers & Mathematics with Applications, 45, 6-9, 1399-1416 (2003) · Zbl 1055.39029 · doi:10.1016/S0898-1221(03)00095-6
[16] Wang, X., Stability criteria for linear periodic Hamiltonian systems, Journal of Mathematical Analysis and Applications, 367, 1, 329-336 (2010) · Zbl 1195.34079 · doi:10.1016/j.jmaa.2010.01.027
[17] Tang, X.-H.; Zhang, M., Lyapunov inequalities and stability for linear Hamiltonian systems, Journal of Differential Equations, 252, 1, 358-381 (2012) · Zbl 1242.37039 · doi:10.1016/j.jde.2011.08.002
[18] Guseinov, G. Sh.; Zafer, A., Stability criterion for second order linear impulsive differential equations with periodic coefficients, Mathematische Nachrichten, 281, 9, 1273-1282 (2008) · Zbl 1161.34027 · doi:10.1002/mana.200510677
[19] Guseinov, G. Sh.; Zafer, A., Stability criteria for linear periodic impulsive Hamiltonian systems, Journal of Mathematical Analysis and Applications, 335, 2, 1195-1206 (2007) · Zbl 1128.34005 · doi:10.1016/j.jmaa.2007.01.095
[20] Kayar, Z.; Zafer, A., Stability criteria for linear Hamiltonian systems under impulsive perturbations · Zbl 1410.34161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.