Yan, Zizong; Wu, Shanhe A Bauer-Hausdorff matrix inequality. (English) Zbl 1449.15055 Abstr. Appl. Anal. 2013, Article ID 894824, 4 p. (2013). Summary: We present a biorthogonal process for two subspaces of \(\mathbb{C}^n\). Applying this process, we derive a matrix inequality, which generalizes the Bauer-Hausdorff inequality for vectors and includes the Wang-IP inequality for matrices. Meanwhile, we obtain its equivalent matrix inequality. MSC: 15A45 Miscellaneous inequalities involving matrices 15B57 Hermitian, skew-Hermitian, and related matrices × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Eijkhout, V.; Vassilevski, P., The role of the strengthened Cauchy-Buniakowskii-Schwarz inequality in multilevel methods, SIAM Review, 33, 3, 405-419 (1991) · Zbl 0737.65026 · doi:10.1137/1033098 [2] Wielandt, H., Inclusion theorems for eigenvalues, Simultaneous Linear Equations and the Determination of Eigenvalues. Simultaneous Linear Equations and the Determination of Eigenvalues, National Bureau of Standards Applied Mathematics Series, 75-78 (1953), Washington, DC, USA: U.S. Government Printing Office, Washington, DC, USA · Zbl 0052.25602 [3] Bauer, F. L.; Householder, A. S., Some inequalities involving the euclidean condition of a matrix, Numerische Mathematik, 2, 308-311 (1960) · Zbl 0104.34502 · doi:10.1007/BF01386231 [4] Wang, S. G.; Ip, W. C., A matrix version of the Wielandt inequality and its applications to statistics, Linear Algebra and Its Applications, 296, 1-3, 171-181 (1999) · Zbl 0942.15014 · doi:10.1016/S0024-3795(99)00117-2 [5] Auzinger, W.; Kirlinger, G., Kreiss resolvent conditions and strengthened Cauchy-Schwarz inequalities, Applied Numerical Mathematics, 18, 1-3, 57-67 (1995) · Zbl 0834.15020 · doi:10.1016/0168-9274(95)00043-T [6] Kreiss, H. O., Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, BIT Numerical Mathematics, 2, 153-181 (1962) · Zbl 0109.34702 [7] Drury, S. W.; Liu, S.; Lu, C. Y.; Puntanen, S.; Styan, G. P. H., Some comments on several matrix inequalities with applications to canonical correlations: historical background and recent developments, Sankhyā, 64, 2, 453-507 (2002) · Zbl 1192.15007 [8] Eaton, M. L., A maximization problem and its application to canonical correlation, Journal of Multivariate Analysis, 6, 3, 422-425 (1976) · Zbl 0332.15008 · doi:10.1016/0047-259X(76)90050-6 [9] Kantorovič, L. V., Functional analysis and applied mathematics, Uspekhi Matematicheskikh Nauk, 3, 6, 89-185 (1948) · Zbl 0034.21203 [10] Zhang, F., Equivalence of the Wielandt inequality and the Kantorovich inequality, Linear and Multilinear Algebra, 48, 3, 275-279 (2001) · Zbl 0995.15011 · doi:10.1080/03081080108818673 [11] Zhan, X. Z., Matrix Theory (2008 (Chinese)), Beijing, China: Higher Education Press, Beijing, China · Zbl 1181.15001 [12] Fujii, M., Wielandt Theorem: Simple Proof and Its Generalizations. Wielandt Theorem: Simple Proof and Its Generalizations, Hokkaido University Technical Report Series in Mathematics (1997) [13] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0576.15001 [14] Zhang, F., The Schur Complement and Its Applications. The Schur Complement and Its Applications, Numerical Methods and Algorithms, 4 (2005), New York, NY, USA: Springer, New York, NY, USA · Zbl 1075.15002 · doi:10.1007/b105056 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.