×

Existence and decay estimate of global solutions to systems of nonlinear wave equations with damping and source terms. (English) Zbl 1470.35227

Summary: The initial-boundary value problem for a class of nonlinear wave equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set and obtain the asymptotic stability of global solutions through the use of a difference inequality.

MSC:

35L20 Initial-boundary value problems for second-order hyperbolic equations
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] Medeiros, L. A.; Miranda, M. M., Weak solutions for a system of nonlinear Klein-Gordon equations, Annali di Matematica Pura ed Applicata, 146, 173-183 (1987) · Zbl 0633.35053 · doi:10.1007/BF01762364
[2] Cavalcanti, M. M.; Cavalcanti, V. N. D.; Filho, J. S. P.; Soriano, J. A., Existence and uniform decay of solutions of a parabolic-hyperbolic equation with nonlinear boundary damping and boundary source term, Communications in Analysis and Geometry, 10, 3, 451-466 (2002) · Zbl 1022.35028
[3] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Martinez, P., Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, Journal of Differential Equations, 203, 1, 119-158 (2004) · Zbl 1049.35047 · doi:10.1016/j.jde.2004.04.011
[4] Cavalcanti, M. M.; Domingos Cavalcanti, V. N., Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, Journal of Mathematical Analysis and Applications, 291, 1, 109-127 (2004) · Zbl 1073.35168 · doi:10.1016/j.jmaa.2003.10.020
[5] Agre, K.; Rammaha, M. A., Systems of nonlinear wave equations with damping and source terms, Differential and Integral Equations, 19, 11, 1235-1270 (2006) · Zbl 1212.35268
[6] Alves, C. O.; Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Rammaha, M. A.; Toundykov, D., On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms, Discrete and Continuous Dynamical Systems, 2, 3, 583-608 (2009) · Zbl 1183.35033 · doi:10.3934/dcdss.2009.2.583
[7] Rammaha, M. A.; Wilstein, Z., Hadamard well-posedness for wave equations with \(p\)-Laplacian damping and supercritical sources, Advances in Differential Equations, 17, 1-2, 105-150 (2012) · Zbl 1262.35151
[8] Yang, Z., Existence and asymptotic behaviour of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Mathematical Methods in the Applied Sciences, 25, 10, 795-814 (2002) · Zbl 1011.35121 · doi:10.1002/mma.306
[9] Ono, K., Blow up phenomenon for nonlinear dissipative wave equatins, Journal of Mathematics, Tokushima University, 30, 19-43 (1996) · Zbl 0923.35098
[10] Dell’Oro, F.; Pata, V., Long-term analysis of strongly damped nonlinear wave equations, Nonlinearity, 24, 12, 3413-3435 (2011) · Zbl 1230.35019 · doi:10.1088/0951-7715/24/12/006
[11] Ma, T. F.; Soriano, J. A., On weak solutions for an evolution equation with exponential nonlinearities, Nonlinear Analysis, 37, 8, Ser. A: Theory Methods, 1029-1038 (1999) · Zbl 0940.35033 · doi:10.1016/S0362-546X(97)00714-1
[12] Rammaha, M. A., The influence of damping and source terms on solutions of nonlinear wave equations, Boletim da Sociedade Paranaense de Matemática, 25, 1-2, 77-90 (2007) · Zbl 1168.35394 · doi:10.5269/bspm.v25i1-2.7427
[13] Alves, C. O.; Cavalcanti, M. M., On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calculus of Variations and Partial Differential Equations, 34, 3, 377-411 (2009) · Zbl 1172.35043 · doi:10.1007/s00526-008-0188-z
[14] Bociu, L.; Rammaha, M.; Toundykov, D., On a wave equation with supercritical interior and boundary sources and damping terms, Mathematische Nachrichten, 284, 16, 2032-2064 (2011) · Zbl 1244.35092 · doi:10.1002/mana.200910182
[15] Sattinger, D. H., On global solution of nonlinear hyperbolic equations, Archive for Rational Mechanics and Analysis, 30, 148-172 (1968) · Zbl 0159.39102
[16] Payne, L. E.; Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel Journal of Mathematics, 22, 3-4, 273-303 (1975) · Zbl 0317.35059 · doi:10.1007/BF02761595
[17] Nakao, M., A difference inequality and its application to nonlinear evolution equations, Journal of the Mathematical Society of Japan, 30, 4, 747-762 (1978) · Zbl 0388.35007 · doi:10.2969/jmsj/03040747
[18] Piskin, E.; Polat, N., Global existence, decay and blow-up solutions for coupled nonlinear wave equations with damping and source terms, Turkish Journal of Mathematics, 30, 1-19 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.