×

Infinite-dimensional modular Lie superalgebra \(\Omega\). (English) Zbl 1470.17012

Summary: All ad-nilpotent elements of the infinite-dimensional Lie superalgebra \(\Omega\) over a field of positive characteristic are determined. The natural filtration of the Lie superalgebra \(\Omega\) is proved to be invariant under automorphisms by characterizing ad-nilpotent elements. Then an intrinsic property is obtained by the invariance of the filtration; that is, the integers in the definition of \(\Omega\) are intrinsic. Therefore, we classify the infinite-dimensional modular Lie superalgebra \(\Omega\) in the sense of isomorphism.

MSC:

17B50 Modular Lie (super)algebras
17B65 Infinite-dimensional Lie (super)algebras
17B70 Graded Lie (super)algebras
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bouarroudj, S.; Grozman, P.; Leites, D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA, 5, 1-63 (2009) · Zbl 1220.17010
[2] Liu, W.; Yuan, J., Special odd Lie superalgebras in prime characteristic, Science China. Mathematics, 55, 3, 567-576 (2012) · Zbl 1270.17010
[3] Shu, B.; Zhang, C., Restricted representations of the Witt superalgebras, Journal of Algebra, 324, 4, 652-672 (2010) · Zbl 1217.17010
[4] Zhang, Y., Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic, Chinese Science Bulletin, 42, 9, 720-724 (1997) · Zbl 0886.17022
[5] Block, R. E.; Wilson, R. L., Classification of the restricted simple Lie algebras, Journal of Algebra, 114, 1, 115-259 (1988) · Zbl 0644.17008
[6] Kac, V. G., Lie superalgebras, Advances in Mathematics, 26, 1, 8-96 (1977) · Zbl 0366.17012
[7] Scheunert, M., The Theory of Lie Superalgebras: An Introduction. The Theory of Lie Superalgebras: An Introduction, Lecture Notes in Mathematics, 716, x+271 (1979), Berlin, Germany: Springer, Berlin, Germany · Zbl 0407.17001
[8] Strade, H., The classification of the simple modular Lie algebras. IV. Determining the associated graded algebra, Annals of Mathematics, 138, 1, 1-59 (1993) · Zbl 0790.17011
[9] Kac, V. G., Description of filtered Lie superalgebras with which graded Lie algebras of Cartan type are associated, Mathematics of the USSR-Izvestiya, 8, 801-835 (1974) · Zbl 0317.17002
[10] Kostrikin, A. I.; Shafarevic, I. R., Graded Lie algebras of finite characteristic, Mathematics of the USSR-Izvestiya, 3, 237-304 (1969) · Zbl 0211.05304
[11] Jin, N., ad-nilpotent elements, quasi-nilpotent elements and invariant filtrations of infinite-dimensional Lie algebras of Cartan type, Science in China A, 35, 10, 1191-1200 (1992) · Zbl 0772.17007
[12] Zhang, Y.; Fu, H., Finite-dimensional Hamiltonian Lie superalgebra, Communications in Algebra, 30, 6, 2651-2673 (2002) · Zbl 1021.17017
[13] Zhang, Y.; Nan, J., Finite-dimensional Lie superalgebras \(W(m, n, \underline{t})\) and \(S(m, n, \underline{t})\) of Cartan type, Advances in Mathematics, 27, 3, 240-246 (1998) · Zbl 1054.17502
[14] Liu, W.; Zhang, Y., Infinite-dimensional modular odd Hamiltonian superalgebras, Communications in Algebra, 32, 6, 2341-2357 (2004) · Zbl 1121.17011
[15] Mu, Q.; Ren, L.; Zhang, Y., Ad-nilpotent elements, isomorphisms, and the Weisfeiler filtration of infinite-dimensional modular odd contact superalgebras, Communications in Algebra, 39, 10, 3581-3593 (2011) · Zbl 1278.17022
[16] Mu, Q.; Zhang, Y., Infinite-dimensional Hamiltonian Lie superalgebras, Science China. Mathematics, 53, 6, 1625-1634 (2010) · Zbl 1271.17011
[17] Zhang, Y.; Liu, W., Infinite-dimensional modular Lie superalgebras \(W\) and \(S\) of Cartan type, Algebra Colloquium, 13, 2, 197-210 (2006) · Zbl 1131.17009
[18] Zhang, Y.; Zhang, Q., The finite-dimensional modular Lie superalgebra \(\Omega \), Journal of Algebra, 321, 12, 3601-3619 (2009) · Zbl 1203.17010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.