Du, Baojian; Gao, Fangzheng; Yuan, Fushun Global finite-time output feedback stabilization for a class of uncertain nonholonomic systems. (English) Zbl 1421.93112 Abstr. Appl. Anal. 2013, Article ID 926971, 10 p. (2013). Summary: This paper investigates the problem of global finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. By using backstepping recursive technique and the homogeneous domination approach, a constructive design procedure for output feedback control is given. Together with a novel switching control strategy, the designed controller renders that the states of closed-loop system are regulated to zero in a finite time. A simulation example is provided to illustrate the effectiveness of the proposed approach. MSC: 93D15 Stabilization of systems by feedback 93C41 Control/observation systems with incomplete information 70F25 Nonholonomic systems related to the dynamics of a system of particles 93C15 Control/observation systems governed by ordinary differential equations Keywords:finite-time output feedback stabilization; uncertain nonholonomic systems PDF BibTeX XML Cite \textit{B. Du} et al., Abstr. Appl. Anal. 2013, Article ID 926971, 10 p. (2013; Zbl 1421.93112) Full Text: DOI References: [1] Brockett, R. W.; Brockett, R. W.; Millman, R. S.; Sussmann, H. J., Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, 2961-2963 (1983) [2] Astolfi, A., Discontinuous control of nonholonomic systems, Systems & Control Letters, 27, 1, 37-45 (1996) · Zbl 0877.93107 [3] Xu, W. L.; Huo, W., Variable structure exponential stabilization of chained systems based on the extended nonholonomic integrator, Systems & Control Letters, 41, 4, 225-235 (2000) · Zbl 0980.93067 [4] Murray, R. M.; Sastry, S. S., Nonholonomic motion planning: steering using sinusoids, IEEE Transactions on Automatic Control, 38, 5, 700-716 (1993) · Zbl 0800.93840 [5] Jiang, Z.-P., Iterative design of time-varying stabilizers for multi-input systems in chained form, Systems & Control Letters, 28, 5, 255-262 (1996) · Zbl 0866.93084 [6] Tian, Y.-P.; Li, S., Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control, Automatica, 38, 7, 1139-1146 (2002) · Zbl 1003.93039 [7] Walsh, G. C.; Bushnell, L. G., Stabilization of multiple input chained form control systems, Systems & Control Letters, 25, 3, 227-234 (1995) · Zbl 0877.93100 [8] Hespanha, J. P.; Liberzon, D.; Morse, A. S., Towards the supervisory control of uncertain nonholonomic systems, Proceedings of the American Control Conference (ACC ’99) [9] Liang, Z.-Y.; Wang, C.-L., Robust stabilization of nonholonomic chained form systems with uncertainties, Acta Automatica Sinica, 37, 2, 129-142 (2011) · Zbl 1240.70015 [10] Jiang, Z.-P., Robust exponential regulation of nonholonomic systems with uncertainties, Automatica, 36, 2, 189-209 (2000) · Zbl 0952.93057 [11] Ge, S. S.; Wang, Z.; Lee, T. H., Adaptive stabilization of uncertain nonholonomic systems by state and output feedback, Automatica, 39, 8, 1451-1460 (2003) · Zbl 1038.93079 [12] Liu, Y.-G.; Zhang, J.-F., Output-feedback adaptive stabilization control design for non-holonomic systems with strong non-linear drifts, International Journal of Control, 78, 7, 474-490 (2005) · Zbl 1115.93082 [13] Xi, Z.; Feng, G.; Jiang, Z. P.; Cheng, D., Output feedback exponential stabilization of uncertain chained systems, Journal of the Franklin Institute, 344, 1, 36-57 (2007) · Zbl 1119.93057 [14] Zheng, X.; Wu, Y., Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts, Nonlinear Analysis: Theory, Methods & Applications, 70, 2, 904-920 (2009) · Zbl 1152.93048 [15] Ju, G.; Wu, Y.; Sun, W., Output-feedback control for nonholonomic systems with linear growth condition, Journal of Systems Science & Complexity, 24, 5, 862-874 (2011) · Zbl 1269.93082 [16] Zhao, Y.; Wu, Y. Q., Control of nonholonomic systems with nonlinear unmeasured dynamics by output feedback, Journal of Control Theory and Applications, 11, 3, 504-512 (2013) [17] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766 (2000) · Zbl 0945.34039 [18] Hong, Y., Finite-time stabilization and stabilizability of a class of controllable systems, Systems & Control Letters, 46, 4, 231-236 (2002) · Zbl 0994.93049 [19] Hong, Y.; Huang, J.; Xu, Y., On an output feedback finite-time stabilization problem, IEEE Transactions on Automatic Control, 46, 2, 305-309 (2001) · Zbl 0992.93075 [20] Huang, X.; Lin, W.; Yang, B., Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, 41, 5, 881-888 (2005) · Zbl 1098.93032 [21] Hong, Y.; Wang, J.; Cheng, D., Adaptive finite-time control of nonlinear systems with parametric uncertainty, IEEE Transactions on Automatic Control, 51, 5, 858-862 (2006) · Zbl 1366.93290 [22] Li, J.; Qian, C., Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems, IEEE Transactions on Automatic Control, 51, 5, 879-884 (2006) · Zbl 1366.93507 [23] Li, J.; Qian, C.; Ding, S., Global finite-time stabilisation by output feedback for a class of uncertain nonlinear systems, International Journal of Control, 83, 11, 2241-2252 (2010) · Zbl 1210.93064 [24] Shen, Y.; Huang, Y., Global finite-time stabilisation for a class of nonlinear systems, International Journal of Systems Science, 43, 1, 73-78 (2012) · Zbl 1259.93098 [25] Zhai, J. Y., Global finite-time output feedback stabilisation for a class of uncertain nontriangular nonlinear systems, International Journal of Systems Science, 45, 3, 637-646 (2012) · Zbl 1307.93334 [26] Hong, Y.; Wang, J.; Xi, Z., Stabilization of uncertain chained form systems within finite settling time, IEEE Transactions on Automatic Control, 50, 9, 1379-1384 (2005) · Zbl 1365.93444 [27] Wang, J.; Zhang, G.; Li, H., Adaptive control of uncertain nonholonomic systems in finite time, Kybernetika, 45, 5, 809-824 (2009) · Zbl 1190.93086 [28] Gao, F.; Shang, Y.; Yuan, F., Robust adaptive finite-time stabilization of nonlinearly parameterized nonholonomic systems, Acta Applicandae Mathematicae, 123, 1, 157-173 (2013) · Zbl 1255.93123 [29] Hermes, H., Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, Differential Equations, 127, 249-260 (1991), New York, NY, USA: Dekker, New York, NY, USA [30] Bacciotti, A.; Rosier, L., Liapunov Functions and Stability in Control Theory (2005), Berlin, Germany: Springer, Berlin, Germany · Zbl 1078.93002 [31] Polendo, J.; Qian, C., A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback, International Journal of Robust and Nonlinear Control, 17, 7, 605-629 (2007) · Zbl 1113.93087 [32] Qian, C.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE Transactions on Automatic Control, 46, 7, 1061-1079 (2001) · Zbl 1012.93053 [33] Polendo, J.; Qian, C., A generalized framework for global output feedback stabilization of genuinely nonlinear systems, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (CDC-ECC ’05) [34] Qian, C., A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems, Proceedings of the American Control Conference (ACC ’5) [35] Kurzweil, J., On the inversion of Lyapunov’s second theorem on the stability of motion, Annals of Mathematical Society Translations, 24, 2, 19-77 (1956) [36] Morin, P.; Pomet, J. B.; Samson, C., Developments in time varying feedback stabilization of nonlinear systems, Preprints of Nonlinear Control Systems Design Symposium, 587-594 (1998), Enschede, The Netherlands This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.