Du, Wei-Shih; Karapınar, Erdal; Shahzad, Naseer The study of fixed point theory for various multivalued non-self-maps. (English) Zbl 1470.54054 Abstr. Appl. Anal. 2013, Article ID 938724, 9 p. (2013). Summary: The basic motivation of this paper is to extend, generalize, and improve several fundamental results on the existence (and uniqueness) of coincidence points and fixed points for well-known maps in the literature such as Kannan type, Chatterjea type, Mizoguchi-Takahashi type, Berinde-Berinde type, Du type, and other types from the class of self-maps to the class of non-self-maps in the framework of the metric fixed point theory. We establish some fixed/coincidence point theorems for multivalued non-self-maps in the context of complete metric spaces. Cited in 9 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 47H10 Fixed-point theorems 47H04 Set-valued operators PDF BibTeX XML Cite \textit{W.-S. Du} et al., Abstr. Appl. Anal. 2013, Article ID 938724, 9 p. (2013; Zbl 1470.54054) Full Text: DOI References: [1] Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integerales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01 [2] Nadler,, S. B., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488 (1969) · Zbl 0187.45002 [3] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, Journal of Mathematical Analysis and Applications, 141, 1, 177-188 (1989) · Zbl 0688.54028 [4] Berinde, M.; Berinde, V., On a general class of multi-valued weakly Picard mappings, Journal of Mathematical Analysis and Applications, 326, 2, 772-782 (2007) · Zbl 1117.47039 [5] Kannan, R., Some results on fixed points. II, The American Mathematical Monthly, 76, 405-408 (1969) · Zbl 0179.28203 [6] Chatterjea, S. K., Fixed-point theorems, Comptes Rendus de l’Académie Bulgare des Sciences, 25, 727-730 (1972) · Zbl 0274.54033 [7] Shioji, N.; Suzuki, T.; Takahashi, W., Contractive mappings, Kannan mappings and metric completeness, Proceedings of the American Mathematical Society, 126, 10, 3117-3124 (1998) · Zbl 0955.54009 [8] Reich, S., Some problems and results in fixed point theory, Topological Methods in Nonlinear Functional Analysis (Toronto, Ont., 1982). Topological Methods in Nonlinear Functional Analysis (Toronto, Ont., 1982), Contemp. Math., 21, 179-187 (1983), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0531.47048 [9] Du, W.-S., Some new results and generalizations in metric fixed point theory, Nonlinear Analysis: Theory, Methods & Applications, 73, 5, 1439-1446 (2010) · Zbl 1190.54030 [10] He, Z.; Du, W.-S.; Lin, I.-J., The existence of fixed points for new nonlinear multivalued maps and their applications, Fixed Point Theory and Applications, 2011, article 84 (2011) · Zbl 1270.54042 [11] Du, W.-S., On generalized weakly directional contractions and approximate fixed point property with applications, Fixed Point Theory and Applications, 2012, article 6 (2012) · Zbl 1281.54022 [12] Du, W.-S., On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology and Its Applications, 159, 1, 49-56 (2012) · Zbl 1231.54021 [13] Du, W.-S., On approximate coincidence point properties and their applications to fixed point theory, Journal of Applied Mathematics, 2012 (2012) · Zbl 1318.54024 [14] Du, W.-S.; He, Z.; Chen, Y.-L., New existence theorems for approximate coincidence point property and approximate fixed point property with applications to metric fixed point theory, Journal of Nonlinear and Convex Analysis, 13, 3, 459-474 (2012) · Zbl 1260.54058 [15] Du, W. S., New cone fixed point theorems for nonlinear multivalued maps with their applications, Applied Mathematics Letters, 24, 2, 172-178 (2011) · Zbl 1218.54037 [16] Du, W.-S.; Zheng, S.-X., Nonlinear conditions for coincidence point and fixed point theorems, Taiwanese Journal of Mathematics, 16, 3, 857-868 (2012) · Zbl 1258.54014 [17] Du, W.-S.; Lakzian, H., Nonlinear conditions for the existence of best proximity points, Journal of Inequalities and Applications, 2012, article 206 (2012) · Zbl 1279.41018 [18] Du, W.-S., New existence results and generalizations for coincidence points and fixed points without global completeness, Abstract and Applied Analysis, 2013 (2013) · Zbl 1267.54042 [19] Browder, F. E., Nonexpansive nonlinear operators in a Banach space, Proceedings of the National Academy of Sciences of the United States of America, 54, 1041-1044 (1965) · Zbl 0128.35801 [20] Browder, F. E.; Petryshyn, W. V., Construction of fixed points of nonlinear mappings in Hilbert space, Journal of Mathematical Analysis and Applications, 20, 197-228 (1967) · Zbl 0153.45701 [21] Kirk, W. A., Remarks on pseudo-contractive mappings, Proceedings of the American Mathematical Society, 25, 820-823 (1970) · Zbl 0203.14603 [22] Kirk, W. A., Fixed point theorems for nonlinear nonexpansive and generalized contraction mappings, Pacific Journal of Mathematics, 38, 89-94 (1971) · Zbl 0195.42702 [23] Assad, N. A.; Kirk, W. A., Fixed point theorems for set-valued mappings of contractive type, Pacific Journal of Mathematics, 43, 553-562 (1972) · Zbl 0239.54032 [24] Reich, S., Fixed points of condensing functions, Journal of Mathematical Analysis and Applications, 41, 460-467 (1973) · Zbl 0252.47062 [25] Assad, N. A., On some nonself nonlinear contractions, Mathematica Japonica, 33, 1, 17-26 (1988) · Zbl 0637.54033 [26] Assad, N. A., On some nonself mappings in Banach spaces, Mathematica Japonica, 33, 4, 501-515 (1988) · Zbl 0671.47051 [27] Assad, N. A., A fixed point theorem for some non-self-mappings, Tamkang Journal of Mathematics, 21, 4, 387-393 (1990) · Zbl 0728.47038 [28] Sintunavarat, W.; Kumam, P., Weak condition for generalized multi-valued \((f, \alpha, \beta)\)-weak contraction mappings, Applied Mathematics Letters, 24, 4, 460-465 (2011) · Zbl 1206.54064 [29] Sintunavarat, W.; Kumam, P., Common fixed point theorem for hybrid generalized multi-valued contraction mappings, Applied Mathematics Letters, 25, 1, 52-57 (2012) · Zbl 1231.54029 [30] Sintunavarat, W.; Kumam, P., Common fixed point theorem for cyclic generalized multi-valued contraction mappings, Applied Mathematics Letters, 25, 11, 1849-1855 (2012) · Zbl 1254.54065 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.