×

The perturbed dual risk model with constant interest and a threshold dividend strategy. (English) Zbl 1470.91254

Summary: We consider the perturbed dual risk model with constant interest and a threshold dividend strategy. Firstly, we investigate the moment-generation function of the present value of total dividends until ruin. Integrodifferential equations with certain boundary conditions are derived for the present value of total dividends. Furthermore, using techniques of sinc numerical methods, we obtain the approximation results to the expected present value of total dividends. Finally, numerical examples are presented to show the impact of interest on the expected present value of total dividends and the absolute ruin probability.

MSC:

91G10 Portfolio theory
45K05 Integro-partial differential equations
60K10 Applications of renewal theory (reliability, demand theory, etc.)

Software:

Sinc-Pack

References:

[1] Avanzi, B.; Gerber, H. U.; Shiu, E. S. W., Optimal dividends in the dual model, Insurance: Mathematics and Economics, 41, 1, 111-123 (2007) · Zbl 1131.91026 · doi:10.1016/j.insmatheco.2006.10.002
[2] Avanzi, B.; Gerber, H. U., Optimal dividends in the dual model with diffusion, ASTIN Bulletin, 38, 2, 653-667 (2008) · Zbl 1274.91463 · doi:10.2143/AST.38.2.2033357
[3] Cramér, H., Collective Risk Theory: A Survey of the Theory from the Point of View of the Theory of Stochastic Process (1955), Stockholm, Sweden: Ab Nordiska Bokhandeln, Stockholm, Sweden
[4] Seal, H. L., Stochastic Theory of a Risk Business (1969), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0196.23501
[5] Takács, L., Combinatorial Methods in the Theory of Stochastic Processes (1967), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0189.17602
[6] Bayraktar, E.; Egami, M., Optimizing venture capital investment in a jump diffusion model, Mathematical Methods of Operations Research, 67, 1, 21-42 (2008) · Zbl 1151.91049 · doi:10.1007/s00186-007-0181-x
[7] Yang, H.; Zhu, J., Ruin probabilities of a dual Markov-modulated risk model, Communications in Statistics—Theory and Methods, 37, 20, 3298-3307 (2008) · Zbl 1292.91100 · doi:10.1080/03610920802117080
[8] de Finetti, B., Su un’impostazione alternativa della teoria collectiva del rischio, Transactions of the 15th International Congress of Actuaries
[9] Bühlmann, H., Mathematical Methods in Risk Theory (1970), New York, NY, USA: Springer, New York, NY, USA · Zbl 0209.23302
[10] Gerber, H. U., Games of economic survival with discrete- and continuous-income processes, Operational Research, 20, 1, 37-45 (1972) · Zbl 0236.90079 · doi:10.1287/opre.20.1.37
[11] Gerber, H. U., An Introduction to Mathematical Risk Theory. An Introduction to Mathematical Risk Theory, S.S. Heubner Foundation Monograph Series, 8 (1979), Homewood, Ill, USA: R.Iwin, Homewood, Ill, USA · Zbl 0431.62066
[12] Albrecher, H.; Badescu, A.; Landriault, D., On the dual risk model with tax payments, Insurance: Mathematics and Economics, 42, 3, 1086-1094 (2008) · Zbl 1141.91481 · doi:10.1016/j.insmatheco.2008.02.001
[13] Gerber, H. U.; Landry, B., On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance: Mathematics and Economics, 22, 3, 263-276 (1998) · Zbl 0924.60075 · doi:10.1016/S0167-6687(98)00014-6
[14] Ng, A. C. Y., On a dual model with a dividend threshold, Insurance: Mathematics and Economics, 44, 2, 315-324 (2009) · Zbl 1163.91441 · doi:10.1016/j.insmatheco.2008.11.011
[15] Lin, X. S.; Pavlova, K. P., The compound Poisson risk model with a threshold dividend strategy, Insurance: Mathematics and Economics, 38, 1, 57-80 (2006) · Zbl 1157.91383 · doi:10.1016/j.insmatheco.2005.08.001
[16] Gao, S.; Liu, Z. M., The perturbed compound Poisson risk model with constant interest and a threshold dividend strategy, Journal of Computational and Applied Mathematics, 233, 9, 2181-2188 (2010) · Zbl 1222.91023 · doi:10.1016/j.cam.2009.10.004
[17] Wan, N., Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion, Insurance: Mathematics and Economics, 40, 3, 509-523 (2007) · Zbl 1183.91077 · doi:10.1016/j.insmatheco.2006.08.002
[18] Lund, J.; Bowers, K. L., Sinc Methods for Quadrature and Differential Equations (1992), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0753.65081 · doi:10.1137/1.9781611971637
[19] Stenger, F., Numerical Methods Based on Sinc and Analytic Functions. Numerical Methods Based on Sinc and Analytic Functions, Springer Series in Computational Mathematics, 20 (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0803.65141 · doi:10.1007/978-1-4612-2706-9
[20] Stenger, F., Summary of Sinc numerical methods, Journal of Computational and Applied Mathematics, 121, 1-2, 379-420 (2000) · Zbl 0964.65010 · doi:10.1016/S0377-0427(00)00348-4
[21] Stenger, F., Handbook of Sinc Numerical Methods (2011), Boca Raton, Fla, USA: CRC & Taylor & Francis, Boca Raton, Fla, USA · Zbl 1208.65143
[22] Chen, X.; Ou, H., A compound Poisson risk model with proportional investment, Journal of Computational and Applied Mathematics, 242, 248-260 (2013) · Zbl 1282.91147 · doi:10.1016/j.cam.2012.10.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.