Almenar, Pedro; Jódar, Lucas Convergent disfocality and nondisfocality criteria for second-order linear differential equations. (English) Zbl 1470.34096 Abstr. Appl. Anal. 2013, Article ID 987976, 11 p. (2013). Summary: This paper presents a method to determine whether the second-order linear differential equation \(y'' + q(x) y = 0\) is either disfocal or nondisfocal in a fixed interval. The method is based on the recursive application of a linear operator to certain functions and yields upper and lower bounds for the distances between a zero and its adjacent critical points, which will be shown to converge to the exact values of such distances as the recursivity index grows. Cited in 1 Document MSC: 34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Kwong, M. K., On Lyapunov’s inequality for disfocality, Journal of Mathematical Analysis and Applications, 83, 2, 486-494 (1981) · Zbl 0504.34020 · doi:10.1016/0022-247X(81)90137-2 [2] Kwong, M. K., Integral inequalities for second-order linear oscillation, Mathematical Inequalities & Applications, 2, 1, 55-71 (1999) · Zbl 0921.34035 · doi:10.7153/mia-02-06 [3] Harris, B. J., On an inequality of Lyapunov for disfocality, Journal of Mathematical Analysis and Applications, 146, 2, 495-500 (1990) · Zbl 0702.34031 · doi:10.1016/0022-247X(90)90319-B [4] Brown, R. C.; Hinton, D. B., Opial’s inequality and oscillation of 2nd order equations, Proceedings of the American Mathematical Society, 125, 4, 1123-1129 (1997) · Zbl 0866.34026 · doi:10.1090/S0002-9939-97-03907-5 [5] Pachpatte, B. G., Mathematical Inequalities (2005), New York, NY, USA: Elsevier, New York, NY, USA · Zbl 1091.26008 [6] Tipler, F. J., General relativity and conjugate ordinary differential equations, Journal of Differential Equations, 30, 2, 165-174 (1978) · Zbl 0362.34023 · doi:10.1016/0022-0396(78)90012-8 [7] Došlý, O., Conjugacy criteria for second order differential equations, The Rocky Mountain Journal of Mathematics, 23, 3, 849-861 (1993) · Zbl 0794.34025 · doi:10.1216/rmjm/1181072527 [8] Moore, R. A., The behavior of solutions of a linear differential equation of second order, Pacific Journal of Mathematics, 5, 125-145 (1955) · Zbl 0064.08401 · doi:10.2140/pjm.1955.5.125 [9] Almenar, P.; Jódar, L., An upper bound for the distance between a zero and a critical point of a solution of a second order linear differential equation, Computers & Mathematics with Applications, 63, 1, 310-317 (2012) · Zbl 1238.34056 · doi:10.1016/j.camwa.2011.11.023 [10] Almenar, P.; Jódar, L., The distribution of zeroes and critical points of solutions of a second order half-linear differential equation, Abstract and Applied Analysis, 2013 (2013) · Zbl 1276.34024 · doi:10.1155/2013/147192 [11] Hutson, V.; Pym, J. S.; Cloud, M. J., Applications of Functional Analysis and Operator Theory. Applications of Functional Analysis and Operator Theory, Mathematics in Science and Engineering, 200 (2005), New York, NY, USA: Elsevier, New York, NY, USA · Zbl 1066.47001 [12] Sagan, H., Boundary and Eigenvalue Problems in Mathematical Physics (1989), New York, NY, USA: Dover, New York, NY, USA · Zbl 1227.35003 [13] Bellman, R., The stability of solutions of linear differential equations, Duke Mathematical Journal, 10, 643-647 (1943) · Zbl 0061.18502 · doi:10.1215/S0012-7094-43-01059-2 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.