VanderLaan circulant type matrices. (English) Zbl 1470.15026

Summary: Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and \(g\)-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan \(g\)-circulant matrix.


15B05 Toeplitz, Cauchy, and related matrices
Full Text: DOI


[1] Huang, S. D.; Zhang, S. Y., Structural properties of circulant composite systems, Acta Automatica Sinica, 24, 6, 798-801 (1998) · Zbl 1498.93298
[2] Huang, S. D.; Zhang, S. Y., Some control problems for symmetric circulant composite systems, Control Theory & Applications, 16, 4, 478-482 (1999) · Zbl 1079.93523
[3] Davison, E. J., Connectability and structural controllability of composite systems, Automatica, 13, 2, 109-123 (1977) · Zbl 0346.93003
[4] Pichai, V.; Sezer, M. E.; Šiljak, D. D., A graph-theoretic characterization of structurally fixed modes, Automatica, 20, 2, 247-250 (1984) · Zbl 0535.93052 · doi:10.1016/0005-1098(84)90033-5
[5] Lunze, J., Dynamics of strongly coupled symmetric composite systems, International Journal of Control, 44, 6, 1617-1640 (1986) · Zbl 0608.93006 · doi:10.1080/00207178608933690
[6] Brockett, R. W.; Willems, J. L., Discretized partial differential equations: examples of control systems defined on modules, Automatica, 10, 4, 507-515 (1974) · Zbl 0288.93017
[7] Hovd, M.; Skogestad, S., Control of symmetrically interconnected plants, Automatica, 30, 6, 957-973 (1994) · Zbl 0799.93022 · doi:10.1016/0005-1098(94)90190-2
[8] Huang, S.; Zhang, S., The solving of Riccati equations for large-scale systems with symmetric circulant structure, Control Theory & Applications, 15, 1, 75-81 (1998)
[9] Liu, M.; Jing, Y.-W.; Zhang, S.-Y., Pole assignment for uncertain symmetric circulant composite systems in a specified disk, IEE Proceedings-Control Theory & Applications, 153, 3, 357-363 (2006) · doi:10.1049/ip-cta:20045021
[10] Lee, K. S.; Won, W. Y.; Lee, J. H., Synthesis of run-to-run repetitive control methods using finite impulse response models, Journal of Process Control, 19, 2, 364-369 (2009) · doi:10.1016/j.jprocont.2008.03.001
[11] Lee, K. S.; Won, W., Applications of block pulse response circulant matrix and its singular value decomposition to MIMO control and identification, International Journal of Control, Automation and Systems, 5, 5, 508-514 (2007)
[12] Davis, P. J., Circulant Matrices (1979), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0418.15017
[13] Jiang, Z. L.; Zhou, Z. X., Circulant Matrices (1999), Chengdu, China: Chengdu Technology University Publishing Company, Chengdu, China
[14] Jiang, Z.; Gong, Y.; Gao, Y., Circulant type matrices with the sum and product of Fibonacci and Lucas numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1472.15007 · doi:10.1155/2014/375251
[15] Jiang, Z.; Gong, Y.; Gao, Y., Invertibility and explicit inverses of circulant-type matrices with \(k\)-Fibonacci and \(k\)-Lucas numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1473.15033 · doi:10.1155/2014/238953
[16] Bose, A.; Hazra, R. S.; Saha, K., Poisson convergence of eigenvalues of circulant type matrices, Extremes, 14, 4, 365-392 (2011) · Zbl 1329.60007 · doi:10.1007/s10687-010-0115-5
[17] Bose, A.; Hazra, R. S.; Saha, K., Spectral norm of circulant-type matrices, Journal of Theoretical Probability, 24, 2, 479-516 (2011) · Zbl 1241.60006 · doi:10.1007/s10959-009-0257-z
[18] Ngondiep, E.; Serra-Capizzano, S.; Sesana, D., Spectral features and asymptotic properties for \(g\)-circulants and \(g\)-Toeplitz sequences, SIAM Journal on Matrix Analysis and Applications, 31, 4, 1663-1687 (2009/10) · Zbl 1206.15010 · doi:10.1137/090760209
[19] Shannon, A. G.; Anderson, P. G.; Horadam, A. F., Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, 37, 7, 825-831 (2006) · Zbl 1149.11300 · doi:10.1080/00207390600712554
[20] Bozkurt, D.; Tam, T.-Y., Determinants and inverses of circulant matrices with JACobsthal and JACobsthal-Lucas Numbers, Applied Mathematics and Computation, 219, 2, 544-551 (2012) · Zbl 1302.15005 · doi:10.1016/j.amc.2012.06.039
[21] Lin, D. Z., Fibonacci-Lucas quasi-cyclic matrices, The Fibonacci Quarterly, 40, 286 (2002) · Zbl 1081.11011
[22] Jiang, Z.; Yao, J.; Lu, F., On skew circulant type matrices involving any continuous Fibonacci numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1470.11027 · doi:10.1155/2014/483021
[23] Shen, S.-Q.; Cen, J.-M.; Hao, Y., On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Applied Mathematics and Computation, 217, 23, 9790-9797 (2011) · Zbl 1222.15010 · doi:10.1016/j.amc.2011.04.072
[24] Jiang, Z.; Li, D., The invertibility, explicit determinants, and inverses of circulant and left circulant and \(g\)-circulant matrices involving any continuous Fibonacci and Lucas numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.15081 · doi:10.1155/2014/931451
[25] Akbulak, M.; Bozkurt, D., On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 37, 2, 89-95 (2008) · Zbl 1204.15031
[26] Bozkurt, D., On the spectral norms of the matrices connected to integer number sequences, Applied Mathematics and Computation, 219, 12, 6576-6579 (2013) · Zbl 1288.15024 · doi:10.1016/j.amc.2013.01.014
[27] Yao, J. J.; Jiang, Z. L., The determinants, inverses, norm, and spread of skew circulant type matrices involving any continuous lucas numbers, Journal of Applied Mathematics, 2014 (2014) · Zbl 1437.15052 · doi:10.1155/2014/239693
[28] Yin, S.; Wang, G.; Karimi, H. R., Data-driven design of robust fault detection system for wind turbines, Mechatronics, 24, 4, 298-306 (2014) · doi:10.1016/j.mechatronics.2013.11.009
[29] Yin, S.; Ding, S. X., A review on basic data-driven approaches for industrial process monitoring, IEEE Transactions on Industrial Electronics, 61, 11, 6418-6428 (2014) · doi:10.1109/TIE.2014.2301773
[30] Yin, S.; Li, X. W., Data-based techniques focused on modern industry: an overview, IEEE Transactions on Industrial Electronics (2014)
[31] Yin, S.; Wang, G.; Yang, X., Robust PLS approach for KPI-related prediction and diagnosis against outliers and missing data, International Journal of Systems Science, 45, 7, 1375-1382 (2014) · Zbl 1290.93212 · doi:10.1080/00207721.2014.886136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.