×

First-order regular and degenerate identification differential problems. (English) Zbl 1470.34052

Summary: We are concerned with both regular and degenerate first-order identification problems related to systems of differential equations of weakly parabolic type in Banach spaces. Several applications to partial differential equations and systems will be given in a subsequent paper to show the fullness of our abstract results.

MSC:

34A55 Inverse problems involving ordinary differential equations
34G10 Linear differential equations in abstract spaces
47A55 Perturbation theory of linear operators

References:

[1] Al Horani, M.; Favini, A., An identification problem for first-order degenerate differential equations, Journal of Optimization Theory and Applications, 130, 1, 41-60 (2006) · Zbl 1129.65044 · doi:10.1007/s10957-006-9083-y
[2] Al-Horani, M.; Favini, A.; Favini, A.; Lorenzi, A., Degenerate first order identification problems in Banach spaces, Differential Equations Inverse and Direct Problems, 1-15 (2006), Boca Raton, Fla, USA: Taylor & Francis, Boca Raton, Fla, USA · Zbl 1115.34012 · doi:10.1201/9781420011135.ch1
[3] Favini, A.; Yagi, A., Degenerate Differential Equations in Banach Spaces (1999), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0913.34001
[4] Engel, K., Operator matrices and systems of evolution equations · Zbl 0936.34044
[5] Yagi, A., Abstract Parabolic Evolution Equations and Their Applications. Abstract Parabolic Evolution Equations and Their Applications, Monographs in Mathematics (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1190.35004 · doi:10.1007/978-3-642-04631-5
[6] Taira, K., The theory of semigroups with weak singularity and its applications to partial differential equations, Tsukuba Journal of Mathematics, 13, 2, 513-562 (1989) · Zbl 0695.47031
[7] Capasso, V.; Kunisch, K., A reaction-diffusion system arising in modelling man-environment diseases, Quarterly of Applied Mathematics, 46, 3, 431-450 (1988) · Zbl 0704.35069
[8] Al Horani, M.; Favini, A., Degenerate first-order inverse problems in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 75, 1, 68-77 (2012) · Zbl 1232.34022 · doi:10.1016/j.na.2011.08.001
[9] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1978), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0387.46033
[10] von Wahl, W., Lineare und semilineare parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 43, 234-262 (1975) · Zbl 0324.35044 · doi:10.1007/BF02995956
[11] Lorenzi, L.; Bertoldi, M., Analytic Methods for Markov Semigroups. Analytic Methods for Markov Semigroups, Pure and Applied Mathematics, 283 (2007), Boca Raton, Fla, USA: Chapman & Hall/CRC, Boca Raton, Fla, USA · Zbl 1109.35005
[12] Lasiecka, I.; Triggiani, R., Control Theory for Partial Differential Equations: Continuous and Approximation Theories I, II: Abstract Parabolic Systems (2000), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0983.35032
[13] Taira, K., Analytic Semigroups and Semilinear Initial Boundary Value Problems (1995), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0861.35001 · doi:10.1017/CBO9780511662362
[14] Wild, C., Semi-groupes de croissance \(\alpha < 1\) holomorphes, Comptes Rendus de l’Académie des Sciences, 285, 6, A437-A440 (1977) · Zbl 0359.47024
[15] Favini, A.; Lorenzi, A.; Tanabe, H.; Yagi, A., An \(L^p\)-approach to singular linear parabolic equations in bounded domains, Osaka Journal of Mathematics, 42, 2, 385-406 (2005) · Zbl 1082.35073
[16] Favini, A.; Lorenzi, A.; Tanabe, H.; Yagi, A., An \(L^p\)-approach to singular linear parabolic equations with lower order terms, Discrete and Continuous Dynamical Systems A, 22, 4, 989-1008 (2008) · Zbl 1165.34034 · doi:10.3934/dcds.2008.22.989
[17] Favini, A.; Lorenzi, A.; Tanabe, H., Degenerate integrodifferential equations of parabolic type with Robin boundary conditions: \(L^2\)-theory, Journal of the Mathematical Society of Japan, 61, 1, 133-176 (2009) · Zbl 1166.45003 · doi:10.2969/jmsj/06110133
[18] Kreĭn, S. G., Linear Differential Equations in Banach Space (1971), Providence, RI, USA: American Mathematical Society, Providence, RI, USA
[19] Sinestrari, E., On the abstract Cauchy problem of parabolic type in spaces of continuous functions, Journal of Mathematical Analysis and Applications, 107, 1, 16-66 (1985) · Zbl 0589.47042 · doi:10.1016/0022-247X(85)90353-1
[20] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems (1995), Basel, Switzerland: Birkhäuser, Basel, Switzerland · Zbl 0816.35001 · doi:10.1007/978-3-0348-9234-6
[21] Yosida, K., Functional Analysis (1969), Berlin, Germany: Springer, Berlin, Germany · Zbl 0152.32102
[22] Fattorini, H. O., The Cauchy Problem. The Cauchy Problem, Encyclopedia of Mathematics and its Applications, 18 (1983), Reading, Mass, USA: Addison-Wesley, Reading, Mass, USA · Zbl 0493.34005
[23] Pazy, A., Semigroups of Linear Operators and Application to Partial Differential Equations. Semigroups of Linear Operators and Application to Partial Differential Equations, Applied Mathematical Sciences, 44 (1983), New York, NY, USA: Springer, New York, NY, USA · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[24] Taira, K., On the existence of Feller semigroups with discontinuous coefficients. II, Acta Mathematica Sinica (English Series), 25, 5, 715-740 (2009) · Zbl 1175.47041 · doi:10.1007/s10114-008-6564-y
[25] Favini, A.; Lorenzi, A.; Tanabe, H., Direct and inverse problems for systems of Singular differential boundary-value problems, Electronic Journal of Differential Equations, 2012, 255, 1-34 (2012) · Zbl 1286.35264
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.