A weak solution of a stochastic nonlinear problem. (English) Zbl 1470.35446

Summary: We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.


35R60 PDEs with randomness, stochastic partial differential equations
35D30 Weak solutions to PDEs
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76S05 Flows in porous media; filtration; seepage
Full Text: DOI


[1] Biot, M. A., Le problème de la consolidation de Matières Argileuses sous une charge, Annales de la Société Scientifique de Bruxelles B, 55, 110-113 (1935)
[2] Biot, M. A., General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 2, 155-164 (1941) · doi:10.1063/1.1712886
[3] Biot, M. A., Theory of elasticity and consolidation for a porous anisotropic solid, Journal of Applied Physics, 26, 182-185 (1955) · Zbl 0067.23603
[4] Biot, M. A., Theory of deformation of a porous viscoelastic anisotropic solid, Journal of Applied Physics, 27, 459-467 (1956)
[5] Bear, J.; Bachmat, Y., Introduction of Modeling of Transport Phenomena in Porous Media (1990), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0743.76003
[6] Bémer, E.; Boutéca, M.; Vincké, O.; Hoteit, N.; Ozanam, O., Poromechanics: from linear to nonlinear poroelasticity and poroviscoelasticity, Oil and Gas Science and Technology—Revue de l’IFP, 56, 6, 531-544 (2001) · doi:10.2516/ogst:2001043
[7] Barucq, H.; Madaune-Tort, M.; Saint-Macary, P., Some existence-uniqueness results for a class of one-dimensional nonlinear Biot models, Nonlinear Analysis: Theory, Methods & Applications, 61, 4, 591-612 (2005) · Zbl 1068.35003 · doi:10.1016/j.na.2004.10.023
[8] Zenisek, A., The existence and uniqueness theorem in Biot’s consolidation theory, Aplikace Matematiky, 29, 194-211 (1984) · Zbl 0557.35005
[9] Hosokawa, A.; Otani, T., Ultrasonic wave propagation in bovine cancellous bone, Journal of the Acoustical Society of America, 101, 1, 558-562 (1997) · doi:10.1121/1.418118
[10] Zeng, Y. Q.; Liu, Q. H., Acoustic detection of buried objects in 3-D fluid saturated porous media: numerical modeling, IEEE Transactions on Geoscience and Remote Sensing, 39, 6, 1165-1173 (2001) · doi:10.1109/36.927434
[11] Auriault, J. L., Sur la rhélogie d’un milieu poreux saturé consolidant, Archive of Journal of Mechanics, 27, 2, 363-370 (1975) · Zbl 0325.76131
[12] Auriault, J. L.; Sanchez-Palencia, E., Etude du comportement macroscopique d.un milieu Poreux Saturé Deformable, Archive of Journal of Mechanics, 5, 16, 575-603 (1977) · Zbl 0382.73013
[13] Bourbé, T.; Coussy, O.; Zinszner, B., Acoustique des Milieux Poreux. Acoustique des Milieux Poreux, Publications de l’Institut Français du Pétrole, Collection ‘Science et Technique du Petrole’ (1998), Paris, France: Technip, Paris, France
[14] Brezis, H., Analyse Fonctionnelle (1983), Paris, France: Masson, Paris, France · Zbl 0511.46001
[15] Hadji, M. L., Etude de l’équation de Navier-Stokes stochastique non homogène, Revue Synthèse, 27, 15-21 (2013)
[16] Hadji, M. L.; Maouni, M.; Nouri, F. Z., A wavelet inpainting by a tixotrop model, Proceedings of the 14th International conference on Information Visualisation, IV, IEEE Computer Society · doi:10.1109/IV.2010.96
[17] Yashima, H. F., Equations de Navier-Stokes stochastiques non homogènes et applications [Ph.D. thesis] (1992), Pisa, Italy: Scuola Normale Superiore, Pisa, Italy · Zbl 0753.35066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.