×

The modified coupled Hirota equation: Riemann-Hilbert approach and N-soliton solutions. (English) Zbl 1474.35590

Summary: The Cauchy initial value problem of the modified coupled Hirota equation is studied in the framework of Riemann-Hilbert approach. The N-soliton solutions are given in a compact form as a ratio of \((N + 1) \times(N + 1)\) determinant and \(N \times N\) determinant, and the dynamical behaviors of the single-soliton solution are displayed graphically.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
30E25 Boundary value problems in the complex plane
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hirota, R., Exact envelope-soliton solutions of a nonlinear wave equation, Journal of Mathematical Physics, 14, 7, 805-809 (1973) · Zbl 0257.35052
[2] Ankiewicz, A.; Soto-Crespo, J. M.; Akhmediev, N., Rogue waves and rational solutions of the Hirota equation, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 81, 4 (2010)
[3] Tao, Y.; He, J., Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 85, 2 (2012)
[4] Li, L.; Wu, Z.; Wang, L.; He, J., High-order rogue waves for the Hirota equation, Annals of Physics, 334, 198-211 (2013) · Zbl 1284.35405
[5] Guo, B.; Ling, L.; Liu, Q. P., Nonlinear schrödinger equation: generalized darboux transformation and rogue wave solutions, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 85, 2 (2012)
[6] Dai, C.; Zhang, J., New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients, Journal of Physics A: Mathematical and General, 39, 4, 723-737 (2006) · Zbl 1088.35538
[7] Bhrawy, A. H.; Alshaery, A. A.; Hilal, E. M.; Manrakhan, W. N.; Savescu, M.; Biswas, A., Dispersive optical solitons with Schrödinger-Hirota equation, Journal of Nonlinear Optical Physics & Materials, 23, 1 (2014)
[8] Faddeev, L.; Volkov, A. Y., Hirota equation as an example of an integrable symplectic map, Fifty Years of Mathematical Physics: Selected Works of Ludwig Faddeev, 252-262 (2016)
[9] Eslami, M.; Mirzazadeh, M. A.; Neirameh, A., New exact wave solutions for hirota equation, Pramana—Journal of Physics, 84, 1, 3-8 (2015)
[10] Wang, X.; Liu, C.; Wang, L., Darboux transformation and rogue wave solutions for the variable-coefficients coupled Hirota equations, Journal of Mathematical Analysis and Applications, 449, 2, 1534-1552 (2017) · Zbl 1361.35160
[11] Tasgal, R. S.; Potasek, M. J., Soliton solutions to coupled higher-order nonlinear Schrödinger equations, Journal of Mathematical Physics, 33, 3, 1208-1215 (1992)
[12] Nakkeeran, K., Exact soliton solutions for a family of N coupled nonliear Schrödinger equations in optical fiber media, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 62, 1, part B, 1313-1321 (2000)
[13] Bindu, S. G.; Mahalingam, A.; Porsezian, K., Dark soliton solutions of the coupled Hirota equation in nonlinear fiber, Physics Letters A, 286, 5, 321-331 (2001) · Zbl 0971.78019
[14] Chen, S., Dark and composite rogue waves in the coupled Hirota equations, Physics Letters A, 378, 38-39, 2851-2856 (2014) · Zbl 1298.35027
[15] Yang, J.; Kaup, D. J., Squared eigenfunctions for the Sasa-SATsuma equation, Journal of Mathematical Physics, 50, 2 (2009) · Zbl 1202.35275
[16] Yang, J., Nonlinear Waves in Integrable and Nonintegrable Systems. Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16 (2010), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA · Zbl 1234.35006
[17] Wang, D.-S.; Zhang, D.-J.; Yang, J., Integrable properties of the general coupled nonlinear Schrödinger equation, Journal of Mathematical Physics, 51, 2, 133-148 (2010) · Zbl 1309.35145
[18] Guo, B.; Ling, L., Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation, Journal of Mathematical Physics, 53, 7 (2012) · Zbl 1276.81068
[19] Geng, X.; Wu, J. P., Riemann-Hilbert approach and \(N\)-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion. An International Journal Reporting Research on Wave Phenomena, 60, 62-72 (2016) · Zbl 1467.35282
[20] Wu, J.; Geng, X., Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation, Communications in Nonlinear Science and Numerical Simulation, 53, 83-93 (2017) · Zbl 1510.35281
[21] Eslami, M.; Mirzazadeh, M., First integral method to look for exact solutions of a variety of Boussinesq-like equations, Ocean Engineering, 83, 133-137 (2014)
[22] Biswas, A.; Mirzazadeh, M.; Eslami, M., Dispersive dark optical soliton with Schödinger-Hirota equation by G′/G-expansion approach in power law medium, Optik - International Journal for Light and Electron Optics, 125, 16, 4215-4218 (2014)
[23] Ekici, M.; Mirzazadeh, M.; Sonmezoglu, A.; Ullah, M. Z.; Asma, M.; Zhou, Q.; Moshokoa, S. P.; Biswas, A.; Belic, M., Dispersive optical solitons with Schrödinger-Hirota equation by extended trial equation method, Optik - International Journal for Light and Electron Optics, 136, 451-461 (2017)
[24] Kilic, B.; Inc, M., Optical solitons for the Schrödinger-Hirota equation with power law nonlinearity by the Bäcklund transformation, Optik - International Journal for Light and Electron Optics, 138, 64-67 (2017)
[25] Xu, S.; Geng, X., \(N\) -soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method, Chinese Physics B, 27, 12 (2018)
[26] Ablowitz, M. J.; Fokas, A. S., Complex Variables, Introduction and Applications. Complex Variables, Introduction and Applications, Cambridge University Press (2003), New York, NY, USA · Zbl 1088.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.