Stochastic image models from SIFT-like descriptors. (English) Zbl 1423.62120


62M40 Random fields; image analysis
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI


[1] T. Ahonen, A. Hadid, and M. Pietikainen, Face description with local binary patterns: Application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), pp. 2037–2041. · Zbl 1098.68717
[2] A. Alahi, R. Ortiz, and P. Vandergheynst, FREAK: Fast retina keypoint, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2012, pp. 510–517.
[3] B. Allen and M. Kon, The Marr Conjecture and Uniqueness of Wavelet Transforms, preprint, , 2015. · Zbl 1404.42062
[4] B. Allen and M. Kon, Unique recovery from edge information, in 2015 International Conference on Sampling Theory and Applications (SampTA), IEEE, 2015, pp. 312–316.
[5] F. Attneave, Some informational aspects of visual perception, Psychological Rev., 61 (1954), pp. 183–193.
[6] S. Battiato, G. Gallo, G. Puglisi, and S. Scellato, SIFT features tracking for video stabilization, in 14th International Conference on Image Analysis and Processing (ICIAP 2007), IEEE, 2007, pp. 825–830.
[7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, Speeded-up robust features (SURF), Comput. Vis. Image Understanding, 110 (2008), pp. 346–359.
[8] M. Black and A. Jepson, Eigentracking: Robust matching and tracking of articulated objects using a view-based representation, Int. J. Comput. Vis., 26 (1998), pp. 63–84.
[9] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, Learning mid-level features for recognition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 2559–2566.
[10] Y.-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, Ask the locals: Multi-way local pooling for image recognition, in 2011 IEEE International Conference on Computer Vision (ICCV 2011), IEEE, 2011, pp. 2651–2658.
[11] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of keypoints, in Workshop on Statistical Learning in Computer Vision, ECCV, 2004.
[12] S. Curtis and A. Oppenheim, Reconstruction of multidimensional signals from zero crossings, J. Opt. Soc. Amer. A, 4 (1987), pp. 221–231, .
[13] S. Curtis, S. Shitz, and A. Oppenheim, Reconstruction of nonperiodic two-dimensional signals from zero crossings, IEEE Trans. Acoust. Speech Signal Process., 35 (1987), pp. 890–893.
[14] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, IEEE, 2005, pp. 886–893.
[15] E. d’Angelo, L. Jacques, A. Alahi, and P. Vandergheynst, From bits to images: Inversion of local binary descriptors, IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014), pp. 874–887.
[16] A. Desolneux, When the a contrario approach becomes generative, Int. J. Comput. Vis., 116 (2016), pp. 46–65. · Zbl 1398.68575
[17] A. Desolneux and A. Leclaire, Stochastic image reconstruction from local histograms of gradient orientation, in Proceedings of the Sixth International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), Lecture Notes in Comput. Sci. 10302, Springer, 2017, pp. 133–145.
[18] A. Desolneux, L. Moisan, and J. Morel, From Gestalt Theory to Image Analysis: A Probabilistic Approach, Interdiscip. Appl. Math. 34, Springer Science & Business Media, 2007.
[19] A. Dosovitskiy and T. Brox, Inverting Visual Representations with Convolutional Networks, preprint, , 2015.
[20] J. H. Elder and S. W. Zucker, Scale space localization, blur, and contour-based image coding, in Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’96), IEEE, 1996, pp. 27–34.
[21] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press, 1993.
[22] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, Object detection with discriminatively trained part-based models, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010), pp. 1627–1645.
[23] C. Harris and M. Stephens, A combined corner and edge detector, in Proc. 4th Alvey Vision Conference, Citeseer, 1988, pp. 147–151.
[24] R. Hummel and R. Moniot, Reconstructions from zero crossings in scale space, IEEE Trans. Acoust. Speech Signal Process., 37 (1989), pp. 2111–2130.
[25] F. Juefei-Xu and M. Savvides, Learning to invert local binary patterns, in the 27th British Machine Vision Conference (BMVC), 2016. · Zbl 1374.94168
[26] H. Kato and T. Harada, Image reconstruction from bag-of-visual-words, in Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014, pp. 955–962.
[27] A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
[28] S. Lazebnik, C. Schmid, and J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, IEEE, 2006, pp. 2169–2178.
[29] S. Leutenegger, M. Chli, and R. Y. Siegwart, BRISK: Binary robust invariant scalable keypoints, in IEEE International Conference on Computer Vision (ICCV), IEEE, 2011, pp. 2548–2555.
[30] T. Lindeberg, Feature detection with automatic scale selection, Int. J. Comput. Vis., 30 (1998), pp. 79–116.
[31] T. Lindeberg, Image matching using generalized scale-space interest points, J. Math. Imaging Vision, 52 (2015), pp. 3–36. · Zbl 1357.94023
[32] D. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60 (2004), pp. 91–110.
[33] Y. Lu, S. Zhu, and Y. N. Wu, Learning FRAME Models Using CNN Filters for Knowledge Visualization, preprint, , 2015.
[34] A. Mahendran and A. Vedaldi, Understanding deep image representations by inverting them, in Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2015, pp. 5188–5196.
[35] A. Mahendran and A. Vedaldi, Visualizing deep convolutional neural networks using natural pre-images, Int. J. Comput. Vis., 120 (2016), pp. 233–255.
[36] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, Adaptive and generic corner detection based on the accelerated segment test, in European Conference on Computer Vision, Springer, 2010, pp. 183–196.
[37] S. Mallat and S. Zhong, Characterization of signals from multiscale edges, IEEE Trans. Pattern Anal. Mach. Intell., 14 (1992), pp. 710–732.
[38] D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information, W.H. Freeman and Company, 1982.
[39] D. Marr and E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond. Ser. B Biol. Sci., 207 (1980), pp. 187–217.
[40] Y. Meyer, Wavelets: Algorithms and Applications, SIAM, 1993.
[41] K. Mikolajczyk and C. Schmid, Scale & affine invariant interest point detectors, Int. J. Comput. Vis., 60 (2004), pp. 63–86.
[42] K. Mikolajczyk and C. Schmid, A performance evaluation of local descriptors, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005), pp. 1615–1630.
[43] J.-M. Morel, A. Petro, and C. Sbert, Fourier implementation of Poisson image editing, Pattern Recognition Lett., 33 (2012), pp. 342–348.
[44] J.-M. Morel and G. Yu, ASIFT: A new framework for fully affine invariant image comparison, SIAM J. Imaging Sci., 2 (2009), pp. 438–469, . · Zbl 1181.68252
[45] J.-M. Morel and G. Yu, Is SIFT scale invariant?, Inverse Probl. Imaging, 5 (2011), pp. 115–136. · Zbl 1217.68195
[46] D. Mumford and A. Desolneux, Pattern Theory: The Stochastic Analysis of Real-World Signals, AK Peters/CRC Press, 2010. · Zbl 1210.94002
[47] P. Musé, F. Sur, F. Cao, Y. Gousseau, and J.-M. Morel, An a contrario decision method for shape element recognition, Int. J. Comput. Vis., 69 (2006), pp. 295–315.
[48] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Appl. Optim. 87, Springer, 2004. · Zbl 1086.90045
[49] M. Nielsen and M. Lillholm, What do features tell about images?, in Scale-Space, Vol. 1, Springer, 2001, pp. 39–50. · Zbl 0991.68582
[50] T. Ojala, M. Pietikäinen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), pp. 971–987.
[51] P. Pérez, M. Gangnet, and A. Blake, Poisson image editing, in ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, 2003, pp. 313–318, .
[52] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, in Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007, pp. 1–8.
[53] I. Rey Otero and M. Delbracio, Anatomy of the SIFT method, Image Process. On Line, 4 (2014), pp. 370–396, .
[54] E. Rosten and T. Drummond, Machine learning for high-speed corner detection, in Computer Vision–ECCV 2006, Springer, 2006, pp. 430–443.
[55] J. Sanz and T. Huang, Theorems and Experiments on Image Reconstruction from Zero Crossings, IBM Almaden Research Center, 1987,
[56] H. Sheikh, Z. Wang, L. Cormack, and A. Bovik, Live Image Quality Assessment Database, release 2 (2005), .
[57] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, in Proceedings of the International Conference on Learning Representations, 2014.
[58] J. Sivic and A. Zisserman, Video Google: A text retrieval approach to object matching in videos, in Proceedings of the 9th IEEE International Conference on Computer Vision, IEEE, 2003, pp. 1470–1477.
[59] T. Tuytelaars and K. Mikolajczyk, Local invariant feature detectors: A survey, Found. Trends Comput. Graphics Vis., 3 (2008), pp. 177–280.
[60] T. Tuytelaars and L. Van Gool, Matching widely separated views based on affine invariant regions, Int. J. Comput. Vis., 59 (2004), pp. 61–85.
[61] A. Vedaldi and B. Fulkerson, VLFeat: An open and portable library of computer vision algorithms, in Proceedings of the 18th ACM International Conference on Multimedia, ACM, 2010, pp. 1469–1472.
[62] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba, HOGgles: Visualizing object detection features, in Proceedings of the 2013 IEEE International Conference on Computer Vision, 2013, pp. 1–8.
[63] C. Wallraven, B. Caputo, and A. Graf, Recognition with local features: The kernel recipe, in Proceedings of the 9th IEEE International Conference on Computer Vision, IEEE, 2003, pp. 257–264.
[64] P. Weinzaepfel, H. Jégou, and P. Pérez, Reconstructing an image from its local descriptors, in Proceedings of the IEEE CVPR, 2011, pp. 337–344.
[65] J. Yang, D. Schonfeld, and M. Mohamed, Robust video stabilization based on particle filter tracking of projected camera motion, IEEE Trans. Circuits Systems Video Technol., 19 (2009), pp. 945–954.
[66] A. Yilmaz, O. Javed, and M. Shah, Object tracking: A survey, ACM Comput. Surveys, 38 (2006), 13.
[67] M. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, in Computer Vision—ECCV 2014, Springer, 2014, pp. 818–833.
[68] J. Zhang, M. Marszał ek, S. Lazebnik, and C. Schmid, Local features and kernels for classification of texture and object categories: A comprehensive study, Int. J. Comput. Vis., 73 (2007), pp. 213–238.
[69] S. Zhu, Y. Wu, and D. Mumford, Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling, Int. J. Comput. Vis., 27 (1998), pp. 107–126.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.