Matrix Dirichlet processes. (English. French summary) Zbl 07097336

Summary: Matrix Dirichlet processes, in reference to their reversible measure, appear in a natural way in many different models in probability. Applying the language of diffusion operators and the theory of boundary equations, we describe Dirichlet processes on the matrix simplex and provide two models of matrix Dirichlet processes, which can be realized by various projections, through the Brownian motion on the special unitary group and also through Wishart processes.


47B25 Linear symmetric and selfadjoint operators (unbounded)
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
Full Text: DOI arXiv Euclid


[1] D. Bakry and X. Bressaud. Diffusions with polynomial eigenvectors via finite subgroups of \(O(3)\), 2015. Available at arXiv:abs/1507.01394. · Zbl 1369.35038
[2] D. Bakry, I. Gentil and M. Ledoux. Analysis and Geometry of Markov Diffusion Operators. Springer, Cham, 2014. · Zbl 1376.60002
[3] D. Bakry and O. Mazet. Characterization of Markov semigroup on \(\mathbb{R}\) associated to some family of orthogonal polynomials. In Séminaire de Probabilités XXXVII 60-80. Lecture Notes in Mathematics1832. Springer, Berlin, 2003. · Zbl 1060.33014
[4] D. Bakry, S. Orevkov and M. Zani. Orthogonal polynomials and diffusion operators. Available at arXiv:abs/1309.5632.
[5] D. Bakry and M. Zani. Dyson processes associated with associative algebras: The Clifford case. In GAFA Seminars (2011-2013) 1-37. B. Klartag and E. Milman (Eds). Lecture Notes in Mathematics2116. Springer, Cham, 2014. · Zbl 1334.60159
[6] M.-F. Bru. Wishart processes. J. Theoret. Probab.4 (1991) 725-751. · Zbl 0737.60067
[7] N. Demni, T. Hamdi and T. Hmidi. Spectral distribution of the free Jacobi process. Indiana Univ. Math. J.61 (3) (2013) 1351-1368. · Zbl 1283.46046
[8] N. Demni and T. Hmidi. Spectral distribution of the free Jacobi process associated with one projection. Colloq. Math.137 (2) (2014) 271-296. · Zbl 1319.46044
[9] C. Donati-Martin, Y. Doumerc, H. Matsumoto and M. Yor. Some properties of the Wishart processes and a matrix extension of the Hartman-Watson laws. Publ. Res. Inst. Math. Sci.40 (2004) 1385-1412. · Zbl 1076.60067
[10] A. K. Gupta and D. K. Nagar. Matrix Variate Distributions. Chapman & Hall/CRC, Boca Raton, FL, 1999. · Zbl 0935.62064
[11] R. D. Gupta and St. P. Richards. Multivariate Liouville distributions. IV. J. Multivariate Anal.54 (1995) 1-17. · Zbl 0863.62046
[12] L. K. Hua. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. American Mathematical Society, Providence, RI, 1963.
[13] G. Letac and H. Massam. A formula on multivariate Dirichlet distributions. Statist. Probab. Lett.38 (1998) 247-253. · Zbl 0903.62050
[14] I. Olkin and B. Rubin. A characterization of the Wishart distribution. Ann. Math. Stat.33 (1962) 1272-1280. · Zbl 0111.34202
[15] J. Warren and M. Yor. The Brownian burglar: Conditioning Brownian motion by its local time process. In Séminaire de Probabilités XXXII 328-342. Lecture Notes in Mathematics1686. Springer, Berlin, 1998. · Zbl 0924.60072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.