×

zbMATH — the first resource for mathematics

Cichoń’s maximum. (English) Zbl 07097497
Summary: Assuming four strongly compact cardinals, it is consistent that all entries in Cichoń’s diagram (apart from \(\text{add}(\mathcal{M})\) and \(\text{cof}(\mathcal{M})\), whose values are determined by the others) are pairwise different; more specifically, \(\aleph_1<\text{add}(\mathcal{N})\) \(<\text{cov}(\mathcal{N})<\mathfrak{b}<\text{non}(\mathcal{M})<\text{cov}(\mathcal{M})<\mathfrak{d}<\text{non}(\mathcal{N})<\text{cof}(\mathcal{N})<2^{\aleph _0}\).

MSC:
03E17 Cardinal characteristics of the continuum
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ackermann, Wilhelm, Die {W}iderspruchsfreiheit der allgemeinen {M}engenlehre, Math. Ann.. Mathematische Annalen, 114, 305-315, (1937) · Zbl 0016.19501
[2] Bartoszy\'{n}ski, Tomek, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 281, 209-213, (1984) · Zbl 0538.03042
[3] Bartoszy\'{n}ski, Tomek, Combinatorial aspects of measure and category, Fund. Math.. Polska Akademia Nauk. Fundamenta Mathematicae, 127, 225-239, (1987) · Zbl 0635.04001
[4] Bartoszy\'{n}ski, Tomek; Judah, Haim, Set Theory. On the Structure of the Real Line, xii+546 pp., (1995) · Zbl 0834.04001
[5] Bartoszy\'{n}ski, Tomek; Judah, Haim; Shelah, Saharon, The {C}icho\'{n} diagram, J. Symbolic Logic. The Journal of Symbolic Logic, 58, 401-423, (1993) · Zbl 0786.03034
[6] Blass, Andreas, Combinatorial cardinal characteristics of the continuum. Handbook of Set {T}heory. {V}ols. 1, 2, 3, 395-489, (2010) · Zbl 1198.03058
[7] Brendle, J\`“{o}rg, Larger cardinals in {C}icho\'”{n}’s diagram, J. Symbolic Logic. The Journal of Symbolic Logic, 56, 795-810, (1991) · Zbl 0758.03021
[8] Brendle, J\`“{o}rg; Cardona, M. A.; Mej{\'”\i}a, D. A., Filter-linkedness and its effect on preservation of cardinal characteristics, (2018)
[9] Cicho\'{n}, J.; Kamburelis, A.; Pawlikowski, J., On dense subsets of the measure algebra, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 94, 142-146, (1985) · Zbl 0593.28003
[10] Cohen, Paul, The independence of the continuum hypothesis, Proc. Nat. Acad. Sci. U.S.A.. Proceedings of the National Academy of Sciences of the United States of America, 50, 1143-1148, (1963) · Zbl 0192.04401
[11] Engelking, R.; Kar\l{o}wicz, M., Some theorems of set theory and their topological consequences, Fund. Math.. Polska Akademia Nauk. Fundamenta Mathematicae, 57, 275-285, (1965) · Zbl 0137.41904
[12] Fischer, Arthur; Goldstern, Martin; Kellner, Jakob; Shelah, Saharon, Creature forcing and five cardinal characteristics in {C}icho\'{n}’s diagram, Arch. Math. Logic. Archive for Mathematical Logic, 56, 1045-1103, (2017) · Zbl 1404.03040
[13] unpublished note, April 18; available on author’s webpage, A remark on large cardinals in ““‘{C}ichon maximum””’, (2019)
[14] Goldstern, Martin; Kellner, Jakob; Mej\'{\i}a, Diego; Shelah, Saharon, Controlling cardinal characteristics without adding reals, (2019)
[15] Goldstern, Martin; Kellner, Jakob; Mej\'{\i}a, Diego; Shelah, Saharon, Cicho\'{n}’s maximum without large cardinals, (2019) · Zbl 07097497
[16] Goldstern, Martin; Mej\'{\i}a, Diego Alejandro; Shelah, Saharon, The left side of {C}icho\'{n}’s diagram, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 144, 4025-4042, (2016) · Zbl 1431.03064
[17] Judah, Haim; Shelah, Saharon, The {K}unen-{M}iller chart ({L}ebesgue measure, the {B}aire property, {L}aver reals and preservation theorems for forcing), J. Symbolic Logic. The Journal of Symbolic Logic, 55, 909-927, (1990) · Zbl 0718.03037
[18] Kamburelis, Anastasis, Iterations of {B}oolean algebras with measure, Arch. Math. Logic. Archive for Mathematical Logic, 29, 21-28, (1989) · Zbl 0687.03032
[19] Kaye, Richard; Wong, Tin Lok, On interpretations of arithmetic and set theory, Notre Dame J. Formal Logic. Notre Dame Journal of Formal Logic, 48, 497-510, (2007) · Zbl 1137.03019
[20] Keisler, H. J.; Tarski, A., From accessible to inaccessible cardinals. {R}esults holding for all accessible cardinal numbers and the problem of their extension to inaccessible ones, Fund. Math.. Polska Akademia Nauk. Fundamenta Mathematicae, 53, 225-308, (1963/1964) · Zbl 0173.00802
[21] Kellner, Jakob; Shelah, S.; T{\u{a}}nasie, A., Another ordering of the ten cardinal characteristics in {C}icho\'{n}’s diagram, Comment. Math. Univ. Carolin.. Commentationes Mathematicae Universitatis Carolinae, 60, 61-95, (2019) · Zbl 1463.03015
[22] Kellner, Jakob; T\u{a}nasie, Anda Ramona; Tonti, Fabio Elio, Compact cardinals and eight values in {C}icho\'{n}’s diagram, J. Symb. Log.. The Journal of Symbolic Logic, 83, 790-803, (2018) · Zbl 1430.03057
[23] Malliaris, M.; Shelah, S., Existence of optimal ultrafilters and the fundamental complexity of simple theories, Adv. Math.. Advances in Mathematics, 290, 614-681, (2016) · Zbl 1431.03048
[24] Mansfield, Richard, The theory of {B}oolean ultrapowers, Ann. Math. Logic. Annals of Pure and Applied Logic, 2, 297-323, (1970/71) · Zbl 0216.29401
[25] Mej{\'{i}}a, Diego A., Matrix iterations with vertical support restrictions. Proceedings of the 14th and 15th Asian Logic Conferences, 213-248, (2019)
[26] Mej\'{i}a, Diego A., A note on ““‘Another ordering of the ten cardinal characteristics in {C}icho\'”’n’s {D}iagram” and further remarks, (2019)
[27] Mej\'{\i}a, Diego Alejandro, Matrix iterations and {C}ichon’s diagram, Arch. Math. Logic. Archive for Mathematical Logic, 52, 261-278, (2013) · Zbl 1270.03087
[28] Miller, Arnold W., Some properties of measure and category, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 266, 93-114, (1981) · Zbl 0472.03040
[29] Miller, Arnold W., A characterization of the least cardinal for which the {B}aire category theorem fails, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 86, 498-502, (1982) · Zbl 0506.03012
[30] Miller, Arnold W., Additivity of measure implies dominating reals, Proc. Amer. Math. Soc.. Proceedings of the American Mathematical Society, 91, 111-117, (1984) · Zbl 0586.03042
[31] Oxtoby, John C., Measure and Category. A {S}urvey of the {A}nalogies between {T}opological and {M}easure {S}paces, Graduate Texts in Math., 2, x+106 pp., (1980) · Zbl 0435.28011
[32] Raghavan, D.; Shelah, S., Boolean ultrapowers and iterated forcing
[33] Raisonnier, Jean; Stern, Jacques, Mesurabilit\'{e} et propri\'{e}t\'{e} de {B}aire, C. R. Acad. Sci. Paris S\'{e}r. I Math.. Comptes Rendus des S\'{e}ances de l’Acad\'{e}mie des Sciences. S\'{e}rie I. Math\'{e}matique, 296, 323-326, (1983) · Zbl 0549.03038
[34] Raisonnier, Jean; Stern, Jacques, The strength of measurability hypotheses, Israel J. Math.. Israel Journal of Mathematics, 50, 337-349, (1985) · Zbl 0602.03012
[35] Shelah, Saharon, Can you take {S}olovay’s inaccessible away?, Israel J. Math.. Israel Journal of Mathematics, 48, 1-47, (1984) · Zbl 0596.03055
[36] Shelah, Saharon, Two cardinal invariants of the continuum {\((\mathfrak{d}<\mathfrak{a})\)} and {FS} linearly ordered iterated forcing, Acta Math.. Acta Mathematica, 192, 187-223, (2004) · Zbl 1106.03044
[37] Solovay, Robert M., A model of set-theory in which every set of reals is {L}ebesgue measurable, Ann. of Math. (2). Annals of Mathematics. Second Series, 92, 1-56, (1970) · Zbl 0207.00905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.