×

zbMATH — the first resource for mathematics

Characterizations of solutions in geochemistry: existence, uniqueness, and precipitation diagram. (English) Zbl 1419.86004
Summary: In this paper, we study the properties of a geochemical model involving aqueous and precipitation-dissolution reactions at a local equilibrium in a diluted solution. This model can be derived from the minimization of the free Gibbs energy subject to linear constraints. By using logarithmic variables, we define another minimization problem subject to different linear constraints with reduced size. The new objective function is strictly convex, so that uniqueness is straightforward. Moreover, existence conditions are directly related to the totals, which are the parameters in the mass balance equation. These results allow us to define a partition of the totals into mineral states, where a given subset of minerals are present. This precipitation diagram is inspired from thermodynamic diagrams where a phase depends on physical parameters. Using the polynomial structure of the problem, we provide characterizations and an algorithm to compute the precipitation diagram. Numerical computations on some examples illustrate this approach.
MSC:
86A04 General questions in geophysics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ben Gharbia, I.; Jaffré, J., Gas phase appearance and disappearance as a problem with complementarity constraints, Math. Comput. Simul., 99, 28-36, (2014)
[2] Bethke, C.M.: Geochemical Reaction Modeling: Concepts and Applications. Oxford University Press, US (1996)
[3] Bethke, C.M.: Geochemical and Biogeochemical Reaction Modeling. Cambridge University Press (2007)
[4] Bonnans, J.-F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C. A.: Numerical Optimization: Theoretical and Practical Aspects. Springer Science & Business Media (2006)
[5] Brunner, F.: Multiphase Multicomponent Flow in Porous Media with General Reactions: Efficient Problem Formulations, Conservative Discretizations, and Convergence Analysis. PhD thesis, Universität Erlangen-Nürnberg (2015)
[6] Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassenrings nach einem nulldimensionalen polynomideal. Universitat Innsbruck. Austria, Ph. D. Thesis (1965) · Zbl 1245.13020
[7] Carrayrou, J., Looking for some reference solutions for the reactive transport benchmark of momas with specy, Comput. Geosci., 14, 393-403, (2010) · Zbl 1425.76235
[8] Carrayrou, J.; Kern, M.; Knabner, P., Reactive transport benchmark of MoMaS, Comput. Geosci., 14, 385-392, (2010) · Zbl 1425.76236
[9] Carrayrou, J.; Hoffmann, J.; Knabner, P.; Kräutle, S.; Dieuleveult, C.; Erhel, J.; Der Lee, J.; Lagneau, V.; Mayer, KU; Macquarrie, KTB, Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems—the MoMaS benchmark case, Comput. Geosci., 14, 483-502, (2010) · Zbl 1426.76723
[10] Cohen, A.M., Cuypers, H., Sterk, H. (eds.): Some Tapas of Computer Algebra, Volume 4 of Algorithms and Computation in Mathematics. Springer, Berlin (1999) · Zbl 0924.13021
[11] Connolly, JAD; Petrini, K., An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions, J. Metamorph. Geol., 20, 697-708, (2002)
[12] Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem, vol. 60. SIAM (2009)
[13] Capitani, C.; Petrakakis, K., The computation of equilibrium assemblage diagrams with Theriak/Domino software, Am. Mineral., 95, 1006-1016, (2010)
[14] Erhel, J.; Sabit, S., Analysis of a global reactive transport model and results for the MoMaS benchmark, Math. Comput. Simul., 137, 286-298, (2017)
[15] de Dieuleveult, C., Erhel, J., Kern, M.: A global strategy for solving reactive transport equations. J. Comput. Phys., 228 (2009) · Zbl 1173.76040
[16] Facchinei, F., Pang, J.-S.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer Science & Business Media (2007) · Zbl 1062.90001
[17] Faugere, J-C, A new efficient algorithm for computing Gröbner bases (F 4), J. Pure Appl. Algebra, 139, 61-88, (1999) · Zbl 0930.68174
[18] Faugere, J-C; Gianni, P.; Lazard, D.; Mora, T., Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symb. Comput., 16, 329-344, (1993) · Zbl 0805.13007
[19] Georget, F.; Prévost, JH; Vanderbei, RJ, A speciation solver for cement paste modeling and the semismooth Newton method, Cem. Concr. Res., 68, 139-147, (2015)
[20] Hoffmann, J.; Kräutle, S.; Knabner, P., A parallel global-implicit 2-d solver for reactive transport problems in porous media based on a reduction scheme and its application to the Momas benchmark problem, Comput. Geosci., 14, 421-433, (2010) · Zbl 1425.76240
[21] Hoffmann, J.; Kräutle, S.; Knabner, P., A general reduction scheme for reactive transport in porous media, Comput. Geosci., 16, 1081-1099, (2012)
[22] Kräutle, S., The semismooth Newton method for multicomponent reactive transport with minerals, Adv. Water Resour., 34, 137-151, (2011)
[23] Kyparisis, J., On uniqueness of Kuhn-Tucker multipliers in nonlinear programming, Math. Program., 32, 242-246, (1985) · Zbl 0566.90085
[24] Leal, AM; Kulik, DA; Kosakowski, G., Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations, Adv. Water Resour., 88, 231-240, (2016)
[25] Leal, AM; Kulik, DA; Smith, WR; Saar, MO, An overview of computational methods for chemical equilibrium and kinetic calculations for geochemical and reactive transport modeling, Pure Appl. Chem., 89, 597-643, (2017)
[26] Lichtner, P.C.: Continuum formulation of multicomponent-multiphase reactive transport. Reviews in Mineralogy and Geochemistry (1996)
[27] Ulrich Mayer, K.; MacQuarrie, KTB, Solution of the momas reactive transport benchmark with min3p—model formulation and simulation results, Comput. Geosci., 14, 405-419, (2010) · Zbl 1426.76690
[28] Migot, T., Erhel, J.: Analyse mathématique de modèles géochimiques. Research report, INRIA Rennes (2014)
[29] Molson, J., Aubertin, M., Bussiere, B.: Reactive transport modelling of acid mine drainage within discretely fractured porous media Plume evolution from a surface source zone. Environ. Modell. Softw., 38 (2012)
[30] Morel, F., Hering, J.G.: Principles and Application of Aquatic Chemistry. Wiley-IEEE (1993)
[31] Parkhurst, D.L., Appelo, C.A.J.: Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Technical report, US Geological Survey (2013)
[32] Rouillier, F., Solving zero-dimensional systems through the rational univariate representation, Applic. Algebra Eng. Commun. Comput., 9, 433-461, (1999) · Zbl 0932.12008
[33] Saaf, F., Tapia, R.A., Bryant, S., Wheeler, M.F.: Computing General Chemical Equilibria with an Interior-Point Method, vol. 1, pp. 201-208. Computational Mechanics Publ (1996)
[34] Saaf, F.E.: A study of reactive transport phenomena in porous media. PhD thesis, Rice University (1997)
[35] Sabit, S.: Les méthodes numériques de transport réactif. PhD thesis. University of Rennes (2014)
[36] Shapiro, NZ; Shapley, LS, Mass action laws and the Gibbs free energy function, J. Soc. Ind. Appl. Math., 13, 353-375, (1965)
[37] Smith, W.R., Missen, R.W.: Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Wiley-Interscience (1982)
[38] Steefel, C.I., MacQuarrie, K.T.B.: Approaches to modeling of reactive transport in porous media. Reviews in Mineralogy and Geochemistry (1996)
[39] Zeleznik, J.F.J., Gordon, S.: Calculation of complex chemical equilibria. Industrial and Engineering Chemistry (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.