zbMATH — the first resource for mathematics

A solution-generating method in Einstein-scalar gravity. (English) Zbl 1429.83056
The authors of the article present a general method for constructing static, spherically symmetric solutions of \((d + 2)\)-dimensional Einstein gravity minimally coupled to a real scalar field with a self-interacting potential. The whole solution is parametrised in terms of a single function, which encodes all the information about the local and global behaviour of the spacetime. The method gives integral formulas for the scalar field profile, the metric functions and the scalar potential. The authors have also given several applications of the solution-generating method, finding explicit solutions of Einstein-scalar gravity theory describing black holes, naked singularities and stars. A solution of interest has as a source a scalar field with the sine-Gordon solitonic profile. There are two points that the authors have not discussed in this paper and which must be supposed to a future investigation: the stability and the thermodynamical behaviour of the black-hole solutions.

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C15 Exact solutions to problems in general relativity and gravitational theory
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
35Q51 Soliton equations
85A15 Galactic and stellar structure
NP; NPspinor
Full Text: DOI
[1] Fisher, I. Z., Scalar mesostatic field with regard for gravitational effects, Zh. Eksp. Teor. Fiz., 18, 636-640, (1948)
[2] Buchdahl, H. A., Reciprocal static metrics and scalar fields in the general theory of relativity, Phys. Rev., 115, 1325-1328, (1959) · Zbl 0087.42405
[3] Janis, A. I.; Newman, E. T.; Winicour, J., Reality of the Schwarzschild singularity, Phys. Rev. Lett., 20, 878-880, (1968)
[4] Wyman, M., Static spherically symmetric scalar fields in general relativity, Phys. Rev. D, 24, 839-841, (1981)
[5] Bechmann, O.; Lechtenfeld, O., Exact black-hole solution with self-interacting scalar field, Class. Quantum Gravity, 12, 1473-1482, (1995) · Zbl 0823.53064
[6] Dennhardt, H.; Lechtenfeld, O., Scalar deformations of Schwarzschild holes and their stability, Int. J. Mod. Phys. A, 13, 741-764, (1998) · Zbl 0921.53048
[7] Bronnikov, K. A.; Shikin, G. N., Spherically symmetric scalar vacuum: no-go theorems, black holes and solitons, Gravit. Cosmol., 8, 107-116, (2002) · Zbl 1029.83025
[8] Bronnikov, K. A.; Fabris, J. C., Regular phantom black holes, Phys. Rev. Lett., 96, (2006) · Zbl 1228.83063
[9] Bronnikov, K. A.; Melnikov, V. N.; Dehnen, H., Regular black holes and black universes, Gen. Relativ. Gravit., 39, 973-987, (2007) · Zbl 1157.83328
[10] Bronnikov, K. A.; Chernakova, M. S., Charged black holes and unusual wormholes in scalar-tensor gravity, Gravit. Cosmol., 13, 51-55, (2007) · Zbl 1142.83011
[11] Nikonov, V. V.; Tchemarina, J. V.; Tsirulev, A. N., A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations, Class. Quantum Gravity, 25, (2008) · Zbl 1145.83011
[12] Azreg-Aïnou, M., Selection criteria for two-parameter solutions to scalar-tensor gravity, Gen. Relativ. Gravit., 42, 1427-1456, (2010) · Zbl 1195.83071
[13] Bekenstein, J. D., Nonexistence of baryon number for static black holes, Phys. Rev. D, 5, 1239-1246, (1972)
[14] Bekenstein, J. D., Novel ‘no scalar hair’ theorem for black holes, Phys. Rev. D, 51, r6608-r6611, (1995)
[15] Mayo, A. E.; Bekenstein, J. D., No hair for spherical black holes: charged and nonminimally coupled scalar field with selfinteraction, Phys. Rev. D, 54, 5059-5069, (1996)
[16] Sudarsky, D., A Simple proof of a no-hair theorem in Einstein-Higgs theory, Class. Quantum Gravity, 12, 579-584, (1995) · Zbl 0816.53068
[17] Torii, T.; Maeda, K.; Narita, M., Scalar hair on the black hole in asymptotically anti-de Sitter space-time, Phys. Rev. D, 64, (2001)
[18] Hertog, T., Towards a novel no-hair theorem for black holes, Phys. Rev. D, 74, (2006)
[19] Herdeiro, C. A.R.; Radu, E., Kerr black holes with scalar hair, Phys. Rev. Lett., 112, (2014)
[20] Herdeiro, C. A.R.; Radu, E.; Herdeiro, C. A.R. (ed.); Cardoso, V. (ed.); Lemos, J. P.S. (ed.); Mena, F. C. (ed.), Asymptotically flat black holes with scalar hair: a review, Aveiro, Portugal, Dec. 18-19, 2014 · Zbl 1339.83008
[21] Cadoni, M.; Mignemi, S.; Serra, M., Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field, Phys. Rev. D, 84, (2011)
[22] Cadoni, M.; Serra, M.; Mignemi, S., Black brane solutions and their solitonic extremal limit in Einstein-scalar gravity, Phys. Rev. D, 85, (2012)
[23] Cadoni, M.; Mignemi, S., Phase transition and hyperscaling violation for scalar black branes, J. High Energy Phys., 06, (2012) · Zbl 1397.83055
[24] Cadoni, M.; Serra, M., Hyperscaling violation for scalar black branes in arbitrary dimensions, J. High Energy Phys., 11, (2012)
[25] Cadoni, M.; Franzin, E., Asymptotically flat black holes sourced by a massless scalar field, Phys. Rev. D, 91, (2015)
[26] Cadoni, M.; Franzin, E.; Serra, M., Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes, J. High Energy Phys., 01, (2016) · Zbl 1388.83046
[27] Solovyev, D. A.; Tsirulev, A. N., General properties and exact models of static self-gravitating scalar field configurations, Class. Quantum Gravity, 29, (2012) · Zbl 1237.83011
[28] Franzin, E.; Cadoni, M.; Tuveri, M., Sine-Gordon solitonic scalar stars and black holes, Phys. Rev. D, 97, (2018)
[29] Gaeta, G.; Reiss, C.; Peyrard, M.; Dauxois, T., Simple models of non-linear DNA dynamics, Riv. Nuovo Cimento, 17, 1-48, (1994)
[30] Barone, A., Paternò, G.: Physics and Applications of the Josephson Effect. Wiley, New York (1982)
[31] Cuevas-Maraver, J., Kevrekidis, P., Williams, F. (eds.): The Sine-Gordon Model and Its Applications. Springer, Heidelberg (2014) · Zbl 1341.37046
[32] Gegenberg, J.; Kunstatter, G., Solitons and black holes, Phys. Lett. B, 413, 274-280, (1997) · Zbl 0967.35143
[33] Cadoni, M., 2-D extremal black holes as solitons, Phys. Rev. D, 58, (1998)
[34] Bronnikov, K. A., Spherically symmetric false vacuum: no-go theorems and global structure, Phys. Rev. D, 64, (2001)
[35] Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)
[36] Carminati, J.; McLenaghan, R. G., Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys., 32, 3135, (1991) · Zbl 0736.76081
[37] Anabalón, A.; Oliva, J., Exact hairy black holes and their modification to the universal law of gravitation, Phys. Rev. D, 86, (2012)
[38] Anabalón, A.; Deruelle, N., On the mechanical stability of asymptotically flat black holes with minimally coupled scalar hair, Phys. Rev. D, 88, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.