×

zbMATH — the first resource for mathematics

Numerical methods for Kohn-Sham density functional theory. (English) Zbl 07099162
Summary: Kohn-Sham density functional theory (DFT) is the most widely used electronic structure theory. Despite significant progress in the past few decades, the numerical solution of Kohn-Sham DFT problems remains challenging, especially for large-scale systems. In this paper we review the basics as well as state-of-the-art numerical methods, and focus on the unique numerical challenges of DFT.

MSC:
65 Numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aktulga, H. M., Lin, L., Haine, C., Ng, E. G. and Yang, C. (2014), ‘Parallel eigenvalue calculation based on multiple shift – invert Lanczos and contour integral based spectral projection method’, Parallel Comput.40, 195-212.
[2] Amestoy, P., Duff, I., L’Excellent, J.-Y. and Koster, J. (2001), ‘A fully asynchronous multifrontal solver using distributed dynamic scheduling’, SIAM J. Matrix Anal. Appl.23, 15-41. · Zbl 0992.65018
[3] Andersen, O. K., Linear methods in band theory, Phys. Rev. B, 12, 3060-3083, (1975)
[4] Anderson, D. G., Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach., 12, 547-560, (1965) · Zbl 0149.11503
[5] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., Mckenney, A. and Sorensen, D. (1999), LAPACK Users’ Guide, third edition, SIAM. · Zbl 0934.65030
[6] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 742-760, (1982) · Zbl 0482.65060
[7] Arnold, D. N., Brezzi, F., Cockburn, B. and Marini, L. D. (2002), ‘Unified analysis of discontinuous Galerkin methods for elliptic problems’, SIAM J. Numer. Anal.39, 1749-1779. · Zbl 1008.65080
[8] Ashcraft, C. and Grimes, R. (1989), ‘The influence of relaxed supernode partitions on the multifrontal method’, ACM Trans. Math. Software15, 291-309. · Zbl 0900.65061
[9] Babuška, I. and Zlámal, M. (1973), ‘Nonconforming elements in the finite element method with penalty’, SIAM J. Numer. Anal.10, 863-875.
[10] Banerjee, A. S., Lin, L., Suryanarayana, P., Yang, C. and Pask, J. E. (2018), ‘Two-level Chebyshev filter based complementary subspace method for pushing the envelope of large-scale electronic structure calculations’, J. Chem. Theory Comput.14, 2930-2946.
[11] Bao, G., Hu, G. and Liu, D. (2012), ‘An \(h\)-adaptive finite element solver for the calculations of the electronic structures’, J. Comput. Phys.231, 4967-4979. · Zbl 1245.65125
[12] Baroni, S. and Giannozzi, P. (1992), ‘Towards very large-scale electronic-structure calculations’, Europhys. Lett.17, 547-552.
[13] Barrault, M., Cancès, E., Hager, W. and Le Bris, C. (2007), ‘Multilevel domain decomposition for electronic structure calculations’, J. Comput. Phys.222, 86-109. · Zbl 1147.81021
[14] Bartók, A. P., Payne, M. C. and Csányi, G. (2010), ‘Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons’, Phys. Rev. Lett.104, 1-4.
[15] Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38, 3098-3100, (1988)
[16] Becke, A. D., Density functional thermochemistry, III: The role of exact exchange, J. Chem. Phys., 98, 5648-5652, (1993)
[17] Belpassi, L., Tarantelli, F., Sgamellotti, A. and Quiney, H. M. (2005), ‘Computational strategies for a four-component Dirac-Kohn-Sham program: Implementation and first applications’, J. Chem. Phys.122, 184109.
[18] Bencteux, G., Barrault, M., Cancès, E., Hager, W. W. and Le Bris, C. (2008), Domain decomposition and electronic structure computations: A promising approach. In Numerical Analysis and Scientific Computing for PDEs and Their Challenging Applications, (Glowinski, R. and Neittaanmäki, P., eds), , Springer, pp. 147-164. · Zbl 1147.81022
[19] Benzi, M., Boito, P. and Razouk, N. (2013), ‘Decay properties of spectral projectors with applications to electronic structure’, SIAM Rev.55, 3-64. · Zbl 1377.65155
[20] Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C. (1997), ScaLAPACK Users’ Guide, SIAM. · Zbl 0886.65022
[21] Blöchl, P. E., Projector augmented-wave method, Phys. Rev. B, 50, 17953-17979, (1994)
[22] Blount, E. I., Formalisms of band theory, Solid State Phys., 13, 305-373, (1962)
[23] Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K. and Scheffler, M. (2009), ‘Ab initio molecular simulations with numeric atom-centered orbitals’, Comput. Phys. Commun.180, 2175-2196. · Zbl 1197.81005
[24] Boffi, N. M., Jain, M. and Natan, A. (2016), ‘Efficient computation of the Hartree-Fock exchange in real-space with projection operators’, J. Chem. Theory Comput.12, 3614-3622.
[25] Bohm, D. and Pines, D. (1953), ‘A collective description of electron interactions, III: Coulomb interactions in a degenerate electron gas’, Phys. Rev.92, 609-625. · Zbl 0053.18203
[26] Bowler, D. R. and Miyazaki, T. (2012), ‘\(O(N)\) methods in electronic structure calculations’, Rep. Prog. Phys.75, 036503.
[27] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31, 333-390, (1977) · Zbl 0373.65054
[28] Brandt, A., Mccormick, S. and Ruge, J. (1985), Algebraic multigrid (AMG) for sparse matrix equations. In Sparsity and its Applications, Cambridge University Press, pp. 257-284. · Zbl 0548.65014
[29] Brawand, N. P., Vörös, M., Govoni, M. and Galli, G. (2016), ‘Generalization of dielectric-dependent hybrid functionals to finite systems’, Phys. Rev. X6, 041002.
[30] Briggs, W., Henson, V. E. and Mccormick, S. F. (2000), A Multigrid Tutorial, second edition, SIAM.
[31] Brouder, C., Panati, G., Calandra, M., Mourougane, C. and Marzari, N. (2007), ‘Exponential localization of Wannier functions in insulators’, Phys. Rev. Lett.98, 046402.
[32] Burke, K., Perspective on density functional theory, J. Chem. Phys., 136, (2012)
[33] Cai, Y., Bai, Z., Pask, J. E. and Sukumar, N. (2013), ‘Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations’, J. Comput. Phys.255, 16-30. · Zbl 1349.81204
[34] Cancès, E. and Lewin, M. (2010), ‘The dielectric permittivity of crystals in the reduced Hartree-Fock approximation’, Arch. Rational Mech. Anal.197, 139-177. · Zbl 1197.82113
[35] Cancès, E. and Mourad, N. (2014), ‘A mathematical perspective on density functional perturbation theory’, Nonlinearity27, 1999.
[36] Cancès, E. and Mourad, N. (2016), ‘Existence of a type of optimal norm-conserving pseudopotentials for Kohn-Sham models’, Commun. Math. Sci.14, 1315-1352. · Zbl 1352.35135
[37] Cancès, E., Deleurence, A. and Lewin, M. (2008), ‘A new approach to the modeling of local defects in crystals: The reduced Hartree-Fock case’, Commun. Math. Phys.281, 129-177. · Zbl 1157.82042
[38] Cancès, E., Levitt, A., Panati, G. and Stoltz, G. (2017), ‘Robust determination of maximally localized Wannier functions’, Phys. Rev. B95, 075114.
[39] Car, R. and Parrinello, M. (1985), ‘Unified approach for molecular dynamics and density-functional theory’, Phys. Rev. Lett.55, 2471-2474.
[40] Ceperley, D. M. and Alder, B. J. (1980), ‘Ground state of the electron gas by a stochastic method’, Phys. Rev. Lett.45, 566-569.
[41] Ceriotti, M., Kühne, T. and Parrinello, M. (2008), ‘An efficient and accurate decomposition of the Fermi operator’, J. Chem. Phys.129, 024707.
[42] Chandrasekaran, S., Gu, M. and Pals, T. (2006), ‘A fast ULV decomposition solver for hierarchically semiseparable representations’, SIAM J. Matrix Anal. Appl.28, 603-622. · Zbl 1120.65031
[43] Chelikowsky, J., Troullier, N. and Saad, Y. (1994), ‘Finite-difference-pseudopotential method: Electronic structure calculations without a basis’, Phys. Rev. Lett.72, 1240-1243.
[44] Chen, G. P., Voora, V. K., Agee, M. M., Balasubramani, S. G. and Furche, F. (2017), ‘Random-phase approximation method’, Ann. Rev. Phys. Chem.68, 421-445.
[45] Chen, H., Dai, X., Gong, X., He, L. and Zhou, A. (2014), ‘Adaptive finite element approximations for Kohn-Sham models’, Multiscale Model. Simul.12, 1828-1869. · Zbl 1316.35260
[46] Chen, J. and Lu, J. (2016), ‘Analysis of the divide-and-conquer method for electronic structure calculations’, Math. Comp.85, 2919-2938. · Zbl 1344.65053
[47] Chow, E., Liu, X., Smelyanskiy, M. and Hammond, J. R. (2015), ‘Parallel scalability of Hartree-Fock calculations’, J. Chem. Phys.142, 104103.
[48] Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K. and Payne, M. C. (2005), ‘First principles methods using CASTEP’, Z. Kristallographie220, 567-570.
[49] Cockburn, B., Karniadakis, G. and Shu, C.-W. (2000), Discontinuous Galerkin methods: Theory, Computation and Applications, , Springer.
[50] Corsetti, F., The orbital minimization method for electronic structure calculations with finite-range atomic basis sets, Comput. Phys. Commun., 185, 873-883, (2014)
[51] Damle, A. and Lin, L. (2018), ‘Disentanglement via entanglement: A unified method for Wannier localization’, Math. Model. Simul.16, 1392-1410. · Zbl 1448.65290
[52] Damle, A., Levitt, A. and Lin, L. (2019), ‘Variational formulation for Wannier functions with entangled band structure’, SIAM Multiscale Model. Simul.17, 167-191. · Zbl 1412.82041
[53] Damle, A., Lin, L. and Ying, L. (2015), ‘Compressed representation of Kohn-Sham orbitals via selected columns of the density matrix’, J. Chem. Theory Comput.11, 1463-1469.
[54] Damle, A., Lin, L. and Ying, L. (2017), ‘SCDM-k: Localized orbitals for solids via selected columns of the density matrix’, J. Comput. Phys.334, 1-15. · Zbl 1375.81255
[55] Davidson, E. R., The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices, J. Comput. Phys., 17, 87-94, (1975) · Zbl 0293.65022
[56] Dawson, W. and Gygi, F. (2015), ‘Performance and accuracy of recursive subspace bisection for hybrid DFT calculations in inhomogeneous systems’, J. Chem. Theory Comput.11, 4655-4663.
[57] Dawson, W. and Nakajima, T. (2018), ‘Massively parallel sparse matrix function calculations with NTPoly’, Comput. Phys. Commun.225, 154-165.
[58] Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. and Lundqvist, B. I. (2004), ‘Van der Waals density functional for general geometries’, Phys. Rev. Lett.92, 246401.
[59] Dong, K., Hu, W. and Lin, L. (2018), ‘Interpolative separable density fitting through centroidal Voronoi tessellation with applications to hybrid functional electronic structure calculations’, J. Chem. Theory Comput.14, 1311-1320.
[60] Dreizler, R. M. and Gross, E. K. U. (1990), Density Functional Theory, Springer. · Zbl 0723.70002
[61] Duchemin, I. and Gygi, F. (2010), ‘A scalable and accurate algorithm for the computation of Hartree-Fock exchange’, Comput. Phys. Commun.181, 855-860. · Zbl 1205.82026
[62] Dunning, T. H., Gaussian basis sets for use in correlated molecular calculations, I: The atoms boron through neon and hydrogen, J. Chem. Phys., 90, 1007-1023, (1989)
[63] E, W. and Lu, J. (2011), ‘The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy-Born rule’, Arch. Ration. Mech. Anal.199, 407-433. · Zbl 1253.74025
[64] Li, W. E. T. and Lu, J. (2010), ‘Localized bases of eigensubspaces and operator compression’, Proc. Nat. Acad. Sci.107, 1273-1278. · Zbl 1205.15017
[65] Edelman, A., Arias, T. A. and Smith, S. T. (1998), ‘The geometry of algorithms with orthogonality constraints’, SIAM J. Matrix Anal. Appl.20, 303-353. · Zbl 0928.65050
[66] . Erisman, A. and Tinney, W. (1975), ‘On computing certain elements of the inverse of a sparse matrix’, Comm. Assoc. Comput. Mach.18, 177-179. · Zbl 0296.65012
[67] Eschrig, H., The Fundamentals of Density Functional Theory, (1996), Springer · Zbl 0868.46052
[68] Fang, H.-R. and Saad, Y. (2009), ‘Two classes of multisecant methods for nonlinear acceleration’, Numer. Linear Algebra Appl.16, 197-221. · Zbl 1224.65134
[69] Fattebert, J. L. and Bernholc, J. (2000), ‘Towards grid-based \(O(N)\) density-functional theory methods: Optimized nonorthogonal orbitals and multigrid acceleration’, Phys. Rev. B62, 1713-1722.
[70] Fermi, E., Un metodo statistico per la determinazione di alcune prioprietà dell’atomo, Rend. Accad. Naz. Lincei., 6, 602-607, (1927)
[71] Feyereisen, M., Fitzgerald, G. and Komornicki, A. (1993), ‘Use of approximate integrals in ab initio theory: An application in MP2 energy calculations’, Chem. Phys. Lett.208, 359-363.
[72] Fornberg, B., A Practical Guide to Pseudospectral Methods, (1998), Cambridge University Press · Zbl 0912.65091
[73] Foster, J. M. and Boys, S. F. (1960), ‘Canonical configurational interaction procedure’, Rev. Mod. Phys.32, 300-302.
[74] Fukazawa, T. and Akai, H. (2015), ‘Optimized effective potential method and application to static RPA correlation’, J. Phys. Condens. Matter27, 115502.
[75] Gao, W. and E, W. (2009), ‘Orbital minimization with localization’, Discrete Contin. Dyn. Syst.23, 249-264. · Zbl 1170.46313
[76] Garcia-Cervera, C. J., Lu, J., Xuan, Y. and E, W. (2009), ‘Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for Kohn-Sham density functional theory’, Phys. Rev. B79, 115110.
[77] Gell-Mann, M. and Brueckner, K. A. (1957), ‘Correlation energy of an electron gas at high density’, Phys. Rev.106, 364-368. · Zbl 0080.44505
[78] Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S. A., Willand, A., Caliste, D., Zilberberg, O., Rayson, M., Bergman, A. and Schneider, R. (2008), ‘Daubechies wavelets as a basis set for density functional pseudopotential calculations’, J. Chem. Phys.129, 014109.
[79] Georges, A., Kotliar, G., Krauth, W. and Rozenberg, M. J. (1996), ‘Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions’, Rev. Mod. Phys.68, 13-125.
[80] Ghosez, P., Gonze, X. and Godby, R. W. (1997), ‘Long-wavelength behavior of the exchange-correlation kernel in the Kohn-Sham theory of periodic systems’, Phys. Rev. B56, 12811-12817.
[81] Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M. B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Corso, A. D., De Gironcoli, S., Delugas, P., Distasio, R. A. Jr, Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., De-La Roza, A. O., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. and Baroni, S. (2017), ‘Advanced capabilities for materials modelling with Quantum Espresso’, J. Phys. Condens. Matter29, 465901.
[82] Godby, R. W., Schlüter, M. and Sham, L. J. (1986), ‘Accurate exchange-correlation potential for Silicon and its discontinuity on addition of an electron’, Phys. Rev. Lett.56, 2415-2418.
[83] Godby, R. W., Schlüter, M. and Sham, L. J. (1988), ‘Self-energy operators and exchange-correlation potentials in semiconductors’, Phys. Rev. B37, 10159-10175.
[84] Goedecker, S., Linear scaling electronic structure methods, Rev. Mod. Phys., 71, 1085-1123, (1999)
[85] Goedecker, S. and Colombo, L. (1994), ‘Efficient linear scaling algorithm for tight-binding molecular dynamics’, Phys. Rev. Lett.73, 122-125.
[86] Goerigk, L. and Grimme, S. (2014), ‘Double-hybrid density functionals’, WIREs Comput. Mol. Sci.4, 576-600.
[87] Golub, G. H. and Van Loan, C. F. (2013), Matrix Computations, fourth edition, Johns Hopkins University Press. · Zbl 1268.65037
[88] Gonze, X., Jollet, F., Abreu Araujo, F., Adams, D., Amadon, B., Applencourt, T., Audouze, C., Beuken, J.-M., Bieder, J., Bokhanchuk, A., Bousquet, E., Bruneval, F., Caliste, D., Côté, M., Dahm, F., Da Pieve, F., Delaveau, M., Di Gennaro, M., Dorado, B., Espejo, C., Geneste, G., Genovese, L., Gerossier, A., Giantomassi, M., Gillet, Y., Hamann, D., He, L., Jomard, G., Laflamme Janssen, J., Le Roux, S., Levitt, A., Lherbier, A., Liu, F., Lukačević, I., Martin, A., Martins, C., Oliveira, M., Poncé, S., Pouillon, Y., Rangel, T., Rignanese, G.-M., Romero, A., Rousseau, B., Rubel, O., Shukri, A., Stankovski, M., Torrent, M., Van Setten, M., Van Troeye, B., Verstraete, M., Waroquiers, D., Wiktor, J., Xu, B., Zhou, A. and Zwanziger, J. (2016), ‘Recent developments in the ABINIT software package’, Comput. Phys. Commun.205, 106-131.
[89] Greengard, L. and Rokhlin, V. (1987), ‘A fast algorithm for particle simulations’, J. Comput. Phys.73, 325-348. · Zbl 0629.65005
[90] Grimme, S., Semiempirical hybrid density functional with perturbative second-order correlation, J. Chem. Phys., 124, (2006)
[91] Gunnarsson, O. and Lundqvist, B. I. (1976), ‘Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism’, Phys. Rev. B13, 4274-4298.
[92] Gygi, F., Architecture of Qbox: A scalable first-principles molecular dynamics code, IBM J. Res. Dev., 52, 137-144, (2008)
[93] Gygi, F., Compact representations of Kohn-Sham invariant subspaces, Phys. Rev. Lett., 102, (2009)
[94] Hackbusch, W., A sparse matrix arithmetic based on \({\mathcal{H}}\)-matrices, I: Introduction to \({\mathcal{H}}\)-matrices, Computing, 62, 89-108, (1999) · Zbl 0927.65063
[95] Hamann, D. R., Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B, 88, (2013)
[96] Hamann, D. R., Schlüter, M. and Chiang, C. (1979), ‘Norm-conserving pseudopotentials’, Phys. Rev. Lett.43, 1494-1497.
[97] Hartwigsen, C., Goedecker, S. and Hutter, J. (1998), ‘Relativistic separable dual-space Gaussian pseudopotentials from H to Rn’, Phys. Rev. B58, 3641-3662.
[98] Hedin, L., New method for calculating the one-particle Green’s function with application to the electron-gas problem, Phys. Rev. A, 139, 796-823, (1965)
[99] Heyd, J., Scuseria, G. E. and Ernzerhof, M. (2003), ‘Hybrid functionals based on a screened Coulomb potential’, J. Chem. Phys.118, 8207-8215.
[100] Higham, N., Functions of Matrices: Theory and Computation, (2008), SIAM
[101] Hohenberg, P. and Kohn, W. (1964), ‘Inhomogeneous electron gas’, Phys. Rev. B136, 864-871.
[102] Hu, J., Jiang, B., Lin, L., Wen, Z. and Yuan, Y. 2018 Structured quasi-Newton methods for optimization with orthogonality constraints. arXiv:1809.00452
[103] Hu, W., Lin, L. and Yang, C. (2015), ‘DGDFT: A massively parallel method for large scale density functional theory calculations’, J. Chem. Phys.143, 124110.
[104] Hu, W., Lin, L. and Yang, C. (2017a), ‘Interpolative separable density fitting decomposition for accelerating hybrid density functional calculations with applications to defects in silicon’, J. Chem. Theory Comput.13, 5420-5431.
[105] Hu, W., Lin, L. and Yang, C. (2017b), ‘Projected commutator DIIS method for accelerating hybrid functional electronic structure calculations’, J. Chem. Theory Comput.13, 5458-5467.
[106] Hu, W., Lin, L., Banerjee, A., Vecharynski, E. and Yang, C. (2017c), ‘Adaptively compressed exchange operator for large scale hybrid density functional calculations with applications to the adsorption of water on silicene’, J. Chem. Theory Comput.13, 1188-1198.
[107] Jacquelin, M., Lin, L. and Yang, C. (2016), ‘PSelInv: A distributed memory parallel algorithm for selected inversion: The symmetric case’, ACM Trans. Math. Software43, 21.
[108] Jacquelin, M., Lin, L. and Yang, C. (2018), ‘PSelInv: A distributed memory parallel algorithm for selected inversion: The non-symmetric case’, Parallel Comput.74, 84-98.
[109] Jensen, F., Atomic orbital basis sets, WIREs Comput. Mol. Sci., 3, 273-295, (2013)
[110] Jia, W. and Lin, L. (2017), ‘Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory’, J. Chem. Phys.147, 144107.
[111] Jin, Y., Zhang, D., Chen, Z., Su, N. Q. and Yang, W. (2017), ‘Generalized optimized effective potential for orbital functionals and self-consistent calculation of random phase approximation’, J. Phys. Chem. Lett.8, 4746-4751.
[112] Kaltak, M., Klimeš, J. and Kresse, G. (2014a), ‘Cubic scaling algorithm for the random phase approximation: Self-interstitials and vacancies in Si’, Phys. Rev. B90, 054115.
[113] Kaltak, M., Klimeš, J. and Kresse, G. (2014b), ‘Low scaling algorithms for the random phase approximation: Imaginary time and Laplace transformations’, J. Chem. Theory Comput.10, 2498-2507.
[114] Kaxiras, E., Atomic and Electronic Structure of Solids, (2003), Cambridge University Press
[115] Kaye, J., Lin, L. and Yang, C. (2015), ‘A posteriori error estimator for adaptive local basis functions to solve Kohn-Sham density functional theory’, Commun. Math. Sci.13, 1741-1773. · Zbl 1330.65171
[116] Kerker, G. P., Efficient iteration scheme for self-consistent pseudopotential calculations, Phys. Rev. B, 23, 3082-3084, (1981)
[117] Kim, J., Mauri, F. and Galli, G. (1995), ‘Total-energy global optimization using nonorthogonal localized orbitals’, Phys. Rev. B52, 1640-1648.
[118] Kivelson, S., Wannier functions in one-dimensional disordered systems: Application to fractionally charged solitons, Phys. Rev. B, 26, 4269-4277, (1982)
[119] Kleinman, L. and Bylander, D. M. (1982), ‘Efficacious form for model pseudopotentials’, Phys. Rev. Lett.48, 1425-1428.
[120] Knizia, G. and Chan, G. (2012), ‘Density matrix embedding: A simple alternative to dynamical mean-field theory’, Phys. Rev. Lett.109, 186404.
[121] Knyazev, A. V., Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23, 517-541, (2001) · Zbl 0992.65028
[122] Kobayashi, M. and Nakai, H. (2009), ‘Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations’, J. Chem. Phys.131, 114108.
[123] Koch, E. and Goedecker, S. (2001), ‘Locality properties and Wannier functions for interacting systems’, Solid State Commun.119, 105-109.
[124] Kohn, W., Analytic properties of Bloch waves and Wannier functions, Phys. Rev., 115, 809-821, (1959) · Zbl 0086.45101
[125] Kohn, W., Density functional and density matrix method scaling linearly with the number of atoms, Phys. Rev. Lett., 76, 3168-3171, (1996)
[126] Kohn, W. and Sham, L. (1965), ‘Self-consistent equations including exchange and correlation effects’, Phys. Rev. A140, 1133-1138.
[127] Kotliar, G., Savrasov, S. Y., Haule, K., Oudovenko, V. S., Parcollet, O. and Marianetti, C. A. (2006), ‘Electronic structure calculations with dynamical mean-field theory’, Rev. Mod. Phys.78, 865-951.
[128] Kresse, G. and Furthmüller, J. (1996), ‘Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set’, Phys. Rev. B54, 11169-11186.
[129] Lai, R. and Lu, J. (2016), ‘Localized density matrix minimization and linear scaling algorithms’, J. Comput. Phys.315, 194-210. · Zbl 1349.82007
[130] Lai, R., Lu, J. and Osher, S. (2015), ‘Density matrix minimization with \(\ell _{1}\) regularization’, Commun. Math. Sci.13, 2097-2117. · Zbl 1327.65110
[131] Landau, L. and Lifshitz, E. (1991), Quantum Mechanics: Non-Relativistic Theory, Butterworth-Heinemann. · Zbl 0178.57901
[132] Langreth, D. C. and Perdew, J. P. (1975), ‘The exchange-correlation energy of a metallic surface’, Solid State Commun.17, 1425-1429.
[133] Lee, C., Yang, W. and Parr, R. G. (1988), ‘Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density’, Phys. Rev. B37, 785-789.
[134] Levy, M., Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the \(v\)-representability problem, Proc. Nat. Acad. Sci., 76, 6062-6065, (1979)
[135] Li, S., Ahmed, S., Klimeck, G. and Darve, E. (2008), ‘Computing entries of the inverse of a sparse matrix using the FIND algorithm’, J. Comput. Phys.227, 9408-9427. · Zbl 1214.82124
[136] Li, Y. and Lin, L. (2019), ‘Globally constructed adaptive local basis set for spectral projectors of second order differential operators’, Multiscale Model. Simul.17, 92-116. · Zbl 1409.65118
[137] Lieb, E. H., Density functionals for Coulomb systems, Int. J. Quantum Chem., 24, 243-277, (1983)
[138] Lieb, E. H. and Loss, M. (2001), Analysis, , AMS.
[139] Lin, L., Adaptively compressed exchange operator, J. Chem. Theory Comput., 12, 2242-2249, (2016)
[140] Lin, L., Localized spectrum slicing, Math. Comp., 86, 2345-2371, (2017) · Zbl 1364.65085
[141] Lin, L. and Lindsey, M. (2019), ‘Convergence of adaptive compression methods for Hartree-Fock-like equations’, Commun. Pure Appl. Math.72, 451-499. · Zbl 1417.35152
[142] Lin, L. and Lu, J. (2016), ‘Decay estimates of discretized Green’s functions for Schrödinger type operators’, Sci. China Math.59, 1561-1578. · Zbl 1354.65218
[143] Lin, L. and Lu, J. (2019), A Mathematical Introduction to Electronic Structure Theory, SIAM, to appear.
[144] Lin, L. and Stamm, B. (2016), ‘A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions, I: Second order linear PDE’, Math. Model. Numer. Anal.50, 1193-1222. · Zbl 1348.65153
[145] Lin, L. and Stamm, B. (2017), ‘A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions, II: Eigenvalue problems’, Math. Model. Numer. Anal.51, 1733-1753. · Zbl 1384.65080
[146] Lin, L. and Yang, C. (2013), ‘Elliptic preconditioner for accelerating self consistent field iteration in Kohn-Sham density functional theory’, SIAM J. Sci. Comp.35, S277-S298. · Zbl 1284.82009
[147] Lin, L., Chen, M., Yang, C. and He, L. (2013), ‘Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion’, J. Phys. Condens. Matter25, 295501.
[148] Lin, L., Lu, J., Ying, L. and E, W. (2009a), ‘Pole-based approximation of the Fermi-Dirac function’, Chin. Ann. Math. B30, 729-742. · Zbl 1188.41007
[149] Lin, L., Lu, J., Ying, L. and E, W. (2012a), ‘Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework, I: Total energy calculation’, J. Comput. Phys.231, 2140-2154. · Zbl 1251.82008
[150] Lin, L., Lu, J., Ying, L. and E, W. (2012b), ‘Optimized local basis function for Kohn-Sham density functional theory’, J. Comput. Phys.231, 4515-4529. · Zbl 1250.82002
[151] Lin, L., Lu, J., Ying, L., Car, R. and E, W. (2009b), ‘Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems’, Commun. Math. Sci.7, 755-777. · Zbl 1182.65072
[152] Lin, L., Xu, Z. and Ying, L. (2017), ‘Adaptively compressed polarizability operator for accelerating large scale ab initio phonon calculations’, Multiscale Model. Simul.15, 29-55. · Zbl 1369.82020
[153] Lin, L., Yang, C., Meza, J., Lu, J., Ying, L. and E, W. (2011), ‘SelInv: An algorithm for selected inversion of a sparse symmetric matrix’, ACM. Trans. Math. Software37, 40. · Zbl 1365.65069
[154] Liu, B. (1978), The simultaneous expansion method for the iterative solution of several of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. Report LBL-8158, Lawrence Berkeley Laboratory, University of California, Berkeley.
[155] Löwdin, P.-O., On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys., 18, 365-375, (1950)
[156] Lu, J. and Thicke, K. (2017a), ‘Cubic scaling algorithm for RPA correlation using interpolative separable density fitting’, J. Comput. Phys.351, 187-202. · Zbl 1375.81259
[157] Lu, J. and Thicke, K. (2017b), ‘Orbital minimization method with \(\ell ^{1}\) regularization’, J. Comput. Phys.336, 87-103. · Zbl 1375.81099
[158] Lu, J. and Ying, L. (2015), ‘Compression of the electron repulsion integral tensor in tensor hypercontraction format with cubic scaling cost’, J. Comput. Phys.302, 329-335. · Zbl 1349.81020
[159] Lu, J. and Ying, L. (2016), ‘Fast algorithm for periodic density fitting for Bloch waves’, Ann. Math. Sci. Appl.1, 321-339. · Zbl 1381.65098
[160] Lu, J., Sogge, C. D. and Steinerberger, S. 2018 Approximating pointwise products of Laplacian eigenfunctions. arXiv:1811.10447
[161] Lu, T., Cai, W., Xin, J. and Guo, Y. (2013), ‘Linear scaling discontinuous Galerkin density matrix minimization method with local orbital enriched finite element basis: 1-D lattice model system’, Commun. Comput. Phys.14, 276-300. · Zbl 1373.81010
[162] Luenser, A., Schurkus, H. F. and Ochsenfeld, C. (2017), ‘Vanishing-overhead linear-scaling Random Phase Approximation by Cholesky decomposition and an attenuated Coulomb-metric’, J. Chem. Theory Comput.13, 1647-1655.
[163] Macqueen, J. (1967), Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California Press, pp. 281-297. · Zbl 0214.46201
[164] Mahan, G., Many-Particle Physics, (2000), Plenum
[165] Makov, G. and Payne, M. C. (1995), ‘Periodic boundary conditions in ab initio calculations’, Phys. Rev. B51, 4014-4022.
[166] Malet, F. and Gori-Giorgi, P. (2012), ‘Strong correlation in Kohn-Sham density functional theory’, Phys. Rev. Lett.109, 246402.
[167] Manby, F. R., Stella, M., Goodpaster, J. D. and Miller, T. F. III (2012), ‘A simple, exact density-functional-theory embedding scheme’, J. Chem. Theory Comput.8, 2564-2568.
[168] Mardirossian, N., Mcclain, J. D. and Chan, G. (2018), ‘Lowering of the complexity of quantum chemistry methods by choice of representation’, J. Chem. Phys.148, 044106.
[169] Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke, A., Bungartz, H.-J. and Lederer, H. (2014), ‘The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory and computational science’, J. Phys. Condens. Matter26, 213201.
[170] Marks, L. D. and Luke, D. R. (2008), ‘Robust mixing for ab initio quantum mechanical calculations’, Phys. Rev. B78, 075114-075125.
[171] Martin, R., Electronic Structure: Basic Theory and Practical Methods, (2008), Cambridge University Press · Zbl 1152.74002
[172] Marx, D. and Hutter, J. (2009), Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge University Press.
[173] Marzari, N. and Vanderbilt, D. (1997), ‘Maximally localized generalized Wannier functions for composite energy bands’, Phys. Rev. B56, 12847-12865.
[174] Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. and Vanderbilt, D. (2012), ‘Maximally localized Wannier functions: Theory and applications’, Rev. Mod. Phys.84, 1419-1475.
[175] Mauri, F. and Galli, G. (1994), ‘Electronic-structure calculations and molecular-dynamics simulations with linear system-size scaling’, Phys. Rev. B50, 4316-4326.
[176] Mauri, F., Galli, G. and Car, R. (1993), ‘Orbital formulation for electronic-structure calculations with linear system-size scaling’, Phys. Rev. B47, 9973-9976.
[177] Mcweeny, R., Some recent advances in density matrix theory, Rev. Mod. Phys., 32, 335-369, (1960) · Zbl 0092.23201
[178] Mermin, N., Thermal properties of the inhomogeneous electron gas, Phys. Rev. A, 137, 1441-1443, (1965)
[179] Mohr, S., Ratcliff, L. E., Boulanger, P., Genovese, L., Caliste, D., Deutsch, T. and Goedecker, S. (2014), ‘Daubechies wavelets for linear scaling density functional theory’, J. Chem. Phys.140, 204110.
[180] Mori-Sánchez, P., Wu, Q. and Yang, W. (2005), ‘Orbital-dependent correlation energy in density-functional theory based on a second-order perturbation approach: Success and failure’, J. Chem. Phys.123, 062204.
[181] Moussa, J. E., Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange, J. Chem. Phys., 140, (2014)
[182] Moussa, J. E., Minimax rational approximation of the Fermi-Dirac distribution, J. Chem. Phys., 145, (2016)
[183] Mustafa, J. I., Coh, S., Cohen, M. L. and Louie, S. G. (2015), ‘Automated construction of maximally localized Wannier functions: Optimized projection functions method’, Phys. Rev. B92, 165134.
[184] Nenciu, G., Existence of the exponentially localised Wannier functions, Comm. Math. Phys., 91, 81-85, (1983) · Zbl 0545.47012
[185] Niklasson, A. M. N., Expansion algorithm for the density matrix, Phys. Rev. B, 66, (2002)
[186] Niklasson, A. M. N. (2011), Linear-scaling techniques in computational chemistry and physics. In Challenges and Advances in Computational Chemistry and Physics (Zalesny, R.et al., eds), Springer, pp. 439-473.
[187] . Niklasson, A. M. N., Tymczak, C. J. and Challacombe, M. (2003), ‘Trace resetting density matrix purification in \({\mathcal{O}}(N)\) self-consistent-field theory’, J. Chem. Phys.118, 8611-8620.
[188] Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, Springer. · Zbl 0930.65067
[189] Ohba, N., Ogata, S., Kouno, T., Tamura, T. and Kobayashi, R. (2012), ‘Linear scaling algorithm of real-space density functional theory of electrons with correlated overlapping domains’, Comput. Phys. Commun.183, 1664-1673.
[190] Onida, G., Reining, L. and Rubio, A. (2002), ‘Electronic excitations: Density-functional versus many-body Green’s-function approaches’, Rev. Mod. Phys.74, 601-659.
[191] Ordejón, P., Drabold, D. A., Grumbach, M. P. and Martin, R. M. (1993), ‘Unconstrained minimization approach for electronic computations that scales linearly with system size’, Phys. Rev. B48, 14646-14649.
[192] Ordejón, P., Drabold, D. A., Martin, R. M. and Grumbach, M. P. (1995), ‘Linear system-size scaling methods for electronic-structure calculations’, Phys. Rev. B51, 1456-1476.
[193] Ozaki, T., Continued fraction representation of the Fermi-Dirac function for large-scale electronic structure calculations, Phys. Rev. B, 75, (2007)
[194] Paler, A. H. R. and Manolopoulos, D. E. (1998), ‘Canonical purification of the density matrix in electronic-structure theory’, Phys. Rev. B58, 12704-12711.
[195] Panati, G. and Pisante, A. (2013), ‘Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions’, Commun. Math. Phys.322, 835-875. · Zbl 1277.82057
[196] Parr, R. and Yang, W. (1989), Density Functional Theory of Atoms and Molecules, Oxford University Press.
[197] Parrish, R. M., Hohenstein, E. G., Martínez, T. J. and Sherrill, C. D. (2012), ‘Tensor hypercontraction, II: Least-squares renormalization’, J. Chem. Phys.137, 224106.
[198] Parrish, R. M., Hohenstein, E. G., Martínez, T. J. and Sherrill, C. D. (2013), ‘Discrete variable representation in electronic structure theory: Quadrature grids for least-squares tensor hypercontraction’, J. Chem. Phys.138, 194107.
[199] Payne, M. C., Teter, M. P., Allen, D. C., Arias, T. A. and Joannopoulos, J. D. (1992), ‘Iterative minimization techniques for ab initio total energy calculation: Molecular dynamics and conjugate gradients’, Rev. Mod. Phys.64, 1045-1097.
[200] Perdew, J. P., Climbing the ladder of density functional approximations, MRS Bull., 38, 743-750, (2013)
[201] Perdew, J. P. and Schmidt, K. (2001), Jacob’s ladder of density functional approximations for the exchange-correlation energy. In AIP Conference Proceedings, Vol. 577, pp. 1-20.
[202] Perdew, J. P. and Zunger, A. (1981), ‘Self-interaction correction to density-functional approximations for many-electron systems’, Phys. Rev. B23, 5048-5079.
[203] Perdew, J. P., Burke, K. and Ernzerhof, M. (1996a), ‘Generalized gradient approximation made simple’, Phys. Rev. Lett.77, 3865-3868.
[204] Perdew, J. P., Ernzerhof, M. and Burke, K. (1996b), ‘Rationale for mixing exact exchange with density functional approximations’, J. Chem. Phys.105, 9982-9985.
[205] Petersen, D. E., Li, S., Stokbro, K., Sørensen, H. H. B., Hansen, P. C., Skelboe, S. and Darve, E. (2009), ‘A hybrid method for the parallel computation of Green’s functions’, J. Comput. Phys.228, 5020-5039. · Zbl 1280.82010
[206] Pfrommer, B., Demmel, J. and Simon, H. (1999), ‘Unconstrained energy functionals for electronic structure calculations’, J. Comput. Phys.150, 287-298. · Zbl 0923.65089
[207] Pick, R., Cohen, M. and Martin, R. (1970), ‘Microscopic theory of force constants in the adiabatic approximation’, Phys. Rev. B1, 910-920.
[208] Polizzi, E., Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79, 115112-115117, (2009)
[209] Prodan, E. and Kohn, W. (2005), ‘Nearsightedness of electronic matter’, Proc. Nat. Acad. Sci.102, 11635-11638.
[210] Pulay, P., Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules, I: Theory, Mol. Phys., 17, 197-204, (1969)
[211] Pulay, P., Convergence acceleration of iterative sequences: the case of SCF iteration, Chem. Phys. Lett., 73, 393-398, (1980)
[212] Pulay, P., Improved SCF convergence acceleration, J. Comput. Chem., 3, 54-69, (1982)
[213] Rayson, M. J. and Briddon, P. R. (2009), ‘Highly efficient method for Kohn-Sham density functional calculations of 500-10 000 atom systems’, Phys. Rev. B80, 205104.
[214] Reine, S., Helgaker, T. and Lindh, R. (2012), ‘Multi-electron integrals’, WIREs Comput. Mol. Sci.2, 290-303.
[215] Ren, X., Rinke, P., Blum, V., Wieferink, J., Tkatchenko, A., Sanfilippo, A., Reuter, K. and Scheffler, M. (2012a), ‘Resolution-of-identity approach to Hartree-Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions’, New J. Phys.14, 053020.
[216] Ren, X., Rinke, P., Joas, C. and Scheffler, M. (2012b), ‘Random-phase approximation and its applications in computational chemistry and materials science’, J. Mater. Sci.47, 7447-7471.
[217] Ren, X., Rinke, P., Scuseria, G. E. and Scheffler, M. (2013), ‘Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks’, Phys. Rev. B88, 035120.
[218] Saad, Y. and Schultz, M. H. (1986), ‘GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems’, SIAM J. Sci. Statist. Comput.7, 856-869. · Zbl 0599.65018
[219] Schenk, O. and Gartner, K. (2006), ‘On fast factorization pivoting methods for symmetric indefinite systems’, Elec. Trans. Numer. Anal.23, 158-179. · Zbl 1112.65022
[220] Schofield, G., Chelikowsky, J. R. and Saad, Y. (2012), ‘A spectrum slicing method for the Kohn-Sham problem’, Comput. Phys. Commun.183, 497-505. · Zbl 1264.82014
[221] Schurkus, H. F. and Ochsenfeld, C. (2016), ‘Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation’, J. Chem. Phys.144, 031101.
[222] Seidl, M., Gori-Giorgi, P. and Savin, A. (2007), ‘Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities’, Phys. Rev. A75, 042511.
[223] Shao, Y., Gan, Z., Epifanovsky, E., Gilbert, A. T., Wormit, M., Kussmann, J., Lange, A. W., Behn, A., Deng, J., Feng, X., Ghosh, D., Goldey, M., Horn, P. R., Jacobson, L. D., Kaliman, I., Khaliullin, R. Z., Kuś, T., Landau, A., Liu, J., Proynov, E. I., Rhee, Y. M., Richard, R. M., Rohrdanz, M. A., Steele, R. P., Sundstrom, E. J., Woodcock, H. L. III, Zimmerman, P. M., Zuev, D., Albrecht, B., Alguire, E., Austin, B., Beran, G. J. O., Bernard, Y. A., Berquist, E., Brandhorst, K., Bravaya, K. B., Brown, S. T., Casanova, D., Chang, C.-M., Chen, Y., Chien, S. H., Closser, K. D., Crittenden, D. L., Diedenhofen, M., Distasio, R. A. Jr, Do, H., Dutoi, A. D., Edgar, R. G., Fatehi, S., Fusti-Molnar, L., Ghysels, A., Golubeva-Zadorozhnaya, A., Gomes, J., Hanson-Heine, M. W., Harbach, P. H., Hauser, A. W., Hohenstein, E. G., Holden, Z. C., Jagau, T.-C., Ji, H., Kaduk, B., Khistyaev, K., Kim, J., Kim, J., King, R. A., Klunzinger, P., Kosenkov, D., Kowalczyk, T., Krauter, C. M., Lao, K. U., Laurent, A. D., Lawler, K. V., Levchenko, S. V., Lin, C. Y., Liu, F., Livshits, E., Lochan, R. C., Luenser, A., Manohar, P., Manzer, S. F., Mao, S.-P., Mardirossian, N., Marenich, A. V., Maurer, S. A., Mayhall, N. J., Neuscamman, E., Oana, C. M., Olivares-Amaya, R., O’Neill, D. P., Parkhill, J. A., Perrine, T. M., Peverati, R., Prociuk, A., Rehn, D. R., Rosta, E., Russ, N. J., Sharada, S. M., Sharma, S., Small, D. W., Sodt, A., Stein, T., Stück, D., Su, Y.-C., Thom, A. J., Tsuchimochi, T., Vanovschi, V., Vogt, L., Vydrov, O., Wang, T., Watson, M. A., Wenzel, J., White, A., Williams, C. F., Yang, J., Yeganeh, S., Yost, S. R., You, Z.-Q., Zhang, I. Y., Zhang, X., Zhao, Y., Brooks, B. R., Chan, G. K., Chipman, D. M., Cramer, C. J., Goddard, W. A. III, Gordon, M. S., Hehre, W. J., Klamt, A., Schaefer, H. F. III, Schmidt, M. W., Sherrill, C. D., Truhlar, D. G., Warshel, A., Xu, X., Aspuru-Guzik, A., Baer, R., Bell, A. T., Besley, N. A., Chai, J.-D., Dreuw, A., Dunietz, B. D., Furlani, T. R., Gwaltney, S. R., Hsu, C.-P., Jung, Y., Kong, J., Lambrecht, D. S., Liang, W., Ochsenfeld, C., Rassolov, V. A., Slipchenko, L. V., Subotnik, J. E., Voorhis, T. V., Herbert, J. M., Krylov, A. I., Gill, P. M. and Head-Gordon, M. (2015), ‘Advances in molecular quantum chemistry contained in the Q-Chem 4 program package’, Mol. Phys.113, 184-215.
[224] Shimojo, F., Kalia, R. K., Nakano, A. and Vashishta, P. (2008), ‘Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications’, Phys. Rev. B77, 085103. · Zbl 1196.82030
[225] Shimojo, F., Ohmura, S., Nakano, A., Kalia, R. and Vashishta, P. (2011), ‘Large-scale atomistic simulations of nanostructured materials based on divide-and-conquer density functional theory’, Eur. Phys. J. Spec. Top.196, 53-63.
[226] Skylaris, C., Haynes, P., Mostofi, A. and Payne, M. (2005), ‘Introducing ONETEP: Linear-scaling density functional simulations on parallel computers’, J. Chem. Phys.122, 084119.
[227] Slater, J. C., Wave functions in a periodic potential, Phys. Rev., 51, 846-851, (1937) · Zbl 0017.04404
[228] Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D. (2002), ‘The SIESTA method for ab initio order-\(N\) materials simulation’, J. Phys. Condens. Matter14, 2745-2779.
[229] Souza, I., Marzari, N. and Vanderbilt, D. (2001), ‘Maximally localized Wannier functions for entangled energy bands’, Phys. Rev. B65, 035109.
[230] Staroverov, V. N., Scuseria, G. E., Tao, J. and Perdew, J. P. (2003), ‘Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes’, J. Chem. Phys.119, 12129-12137.
[231] Stoudenmire, E. M. and White, S. R. (2017), ‘Sliced basis density matrix renormalization group for electronic structure’, Phys. Rev. Lett.119, 046401.
[232] Sun, J., Ruzsinszky, A. and Perdew, J. P. (2015), ‘Strongly constrained and appropriately normed semilocal density functional’, Phys. Rev. Lett.115, 036402.
[233] Sun, Q. and Chan, G. K.-L (2016), ‘Quantum embedding theories’, Acc. Chem. Res.49, 2705-2712.
[234] Sun, Q., Berkelbach, T. C., Mcclain, J. D. and Chan, G. (2017), ‘Gaussian and plane-wave mixed density fitting for periodic systems’, J. Chem. Phys.147, 164119.
[235] Suryanarayana, P., Gavani, V., Blesgen, T., Bhattacharya, K. and Ortiz, M. (2010), ‘Non-periodic finite-element formulation of Kohn-Sham density functional theory’, J. Mech. Phys. Solids58, 258-280. · Zbl 1193.81006
[236] Sylvester, J. J., A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares, Philos. Mag., 4, 138-142, (1852)
[237] Szabo, A. and Ostlund, N. (1989), Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, McGraw-Hill.
[238] Teter, M., Payne, M. and Allan, D. (1989), ‘Solution of Schrödinger’s equation for large systems’, Phys. Rev. B40, 12255-12263.
[239] Thaller, B., The Dirac Equation, (1992), Springer · Zbl 0881.47021
[240] Thomas, L. H., The calculation of atomic fields, Proc. Camb. Phil. Soc., 23, 542-548, (1927) · JFM 53.0868.04
[241] Trefethen, L. N., Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50, 67-87, (2008) · Zbl 1141.65018
[242] Troullier, N. and Martins, J. L. (1991), ‘Efficient pseudopotentials for plane-wave calculations’, Phys. Rev. B43, 1993-2006.
[243] Truflandier, L. A., Dianzinga, R. M. and Bowler, D. R. (2016), ‘Communication: Generalized canonical for density matrix minimization’, J. Chem. Phys.144, 091102.
[244] Tsuchida, E., Augmented orbital minimization method for linear scaling electronic structure calculations, J. Phys. Soc. Japan, 76, (2007)
[245] Tsuchida, E. and Tsukada, M. (1995), ‘Electronic-structure calculations based on the finite-element method’, Phys. Rev. B52, 5573-5578.
[246] Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van Dam, H. J. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L. and De Jong, W. (2010), ‘NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations’, Comput. Phys. Commun.181, 1477-1489. · Zbl 1216.81179
[247] Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892-7895, (1990)
[248] Vecharynski, E., Yang, C. and Pask, J. E. (2015), ‘A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix’, J. Comput. Phys.290, 73-89. · Zbl 1349.65133
[249] Vömel, C., ScaLAPACK’s MRRR algorithm, ACM Trans. Math. Software, 37, 1, (2010) · Zbl 1364.65088
[250] Von Barth, U. and Hedin, L. (1972), ‘A local exchange-correlation potential for the spin polarized case’, J. Phys.C Solid State Phys.5, 1629-1642.
[251] Wang, L.-W., Zhao, Z. and Meza, J. (2008), ‘Linear-scaling three-dimensional fragment method for large-scale electronic structure calculations’, Phys. Rev. B77, 165113.
[252] Wannier, G. H., The structure of electronic excitation levels in insulating crystals, Phys. Rev., 52, 191-197, (1937) · JFM 63.1417.03
[253] Warshel, A. and Levitt, M. (1976), ‘Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme’, J. Mol. Biol.103, 227-249.
[254] Weigend, F., A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency, Phys. Chem. Chem. Phys., 4, 4285-4291, (2002)
[255] Weigend, F., Häser, M., Patzelt, H. and Ahlrichs, R. (1998), ‘RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency’, Chem. Phys. Lett.294, 143-152.
[256] Wen, Z. and Yin, W. (2013), ‘A feasible method for optimization with orthogonality constraints’, Math. Program.142, 397-434. · Zbl 1281.49030
[257] Werner, H., Knowles, P. J., Knizia, G., Manby, F. R. and Schütz, M. (2012), ‘Molpro: A general-purpose quantum chemistry program package’, WIREs Comput. Mol. Sci.2, 242-253.
[258] White, S. R., Hybrid grid/basis set discretizations of the Schrödinger equation, J. Chem. Phys., 147, (2017)
[259] Wilhelm, J., Seewald, P., Del Ben, M. and Hutter, J. (2016), ‘Large-scale cubic-scaling random phase approximation correlation energy calculations using a Gaussian basis’, J. Chem. Theory Comput.12, 5851-5859.
[260] Wu, X., Selloni, A. and Car, R. (2009), ‘Order-\(N\) implementation of exact exchange in extended insulating systems’, Phys. Rev. B79, 085102.
[261] Xu, Q., Suryanarayana, P. and Pask, J. E. (2018), ‘Discrete discontinuous basis projection method for large-scale electronic structure calculations’, J. Chem. Phys.149, 094104.
[262] Yang, C., Meza, J. and Wang, L. (2006), ‘A constrained optimization algorithm for total energy minimization in electronic structure calculations’, J. Comput. Phys.217, 709-721. · Zbl 1102.81340
[263] Yang, W., Direct calculation of electron density in density-functional theory, Phys. Rev. Lett., 66, 1438-1441, (1991)
[264] Yang, W., Direct calculation of electron density in density-functional theory: Implementation for benzene and a tetrapeptide, Phys. Rev. A, 44, 7823-7826, (1991)
[265] Yang, W. and Lee, T.-S. (1995), ‘A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules’, J. Chem. Phys.103, 5674-5678.
[266] Yu, V. W.-Z., Corsetti, F., García, A., Huhn, W. P., Jacquelin, M., Jia, W., Lange, B., Lin, L., Lu, J., Mi, W., Seifitokaldani, A., Vazquez-Mayagoitia, A., Yang, C., Yang, H. and Blum, V. (2018), ‘ELSI: A unified software interface for Kohn-Sham electronic structure solvers’, Comput. Phys. Commun.222, 267-285.
[267] Zhang, G., Lin, L., Hu, W., Yang, C. and Pask, J. E. (2017), ‘Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework, II: Force, vibration, and molecular dynamics calculations’, J. Comput. Phys.335, 426-443. · Zbl 1375.82015
[268] Zhang, H., Smith, B., Sternberg, M. and Zapol, P. (2007), ‘SIPs: Shift-and-invert parallel spectral transformations’, ACM Trans. Math. Software33, 9-19. · Zbl 1365.65098
[269] Zhang, I. Y., Rinke, P. and Scheffler, M. (2016), ‘Wave-function inspired density functional applied to the \(H_{2}/H_{2}^{+}\) challenge’, New J. Phys.18, 073026.
[270] Zhang, L., Han, J., Wang, H., Car, R. and (2018), ‘Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics’, Phys. Rev. Lett.120, 143001.
[271] Zhang, Y., Xu, X. and Goddard, W. A. III (2009), ‘Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics’, Proc. Nat. Acad. Sci. USA106, 4963-4968.
[272] Zhao, Z., Meza, J. and Wang, L.-W. (2008), ‘A divide-and-conquer linear scaling three-dimensional fragment method for large scale electronic structure calculations’, J. Phys. Condens. Matter20, 294203.
[273] Zhou, Y., Chelikowsky, J. R. and Saad, Y. (2014), ‘Chebyshev-filtered subspace iteration method free of sparse diagonalization for solving the Kohn-Sham equation’, J. Comput. Phys.274, 770-782. · Zbl 1351.82098
[274] Zhou, Y., Saad, Y., Tiago, M. L. and Chelikowsky, J. R. (2006), ‘Self-consistent-field calculations using Chebyshev-filtered subspace iteration’, J. Comput. Phys.219, 172-184. · Zbl 1105.65111
[275] Ziman, J. M., Principles of the Theory of Solids, (1979), Cambridge University Press · Zbl 0121.44801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.