×

zbMATH — the first resource for mathematics

Simultaneous sensing error recovery and tomographic inversion using an optimization-based approach. (English) Zbl 1420.65141
MSC:
65R32 Numerical methods for inverse problems for integral equations
90C30 Nonlinear programming
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Software:
tn; TomoPy; TRON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. Amat, D. Castan͂o-Diez, A. Lawrence, F. Moussavi, H. Winkler, and M. Horowitz, Alignment of cryo-electron tomography datasets, in Cryo-EM, Part B: 3-D Reconstruction, Methods Enzymol. 482, Elsevier, 2010, pp. 343–367.
[2] S. G. Azevedo, D. J. Schneberk, J. P. Fitch, and H. E. Martz, Calculation of the rotational centers in computed tomography sinograms, IEEE Trans. Nucl. Sci., 37 (1990), pp. 1525–1540.
[3] U. Bonse and F. Busch, X-ray computed microtomography (\(\mu\)CT) using synchrotron radiation (SR), Prog. Biophys. Mol. Biol., 65 (1996), pp. 133–169.
[4] R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, 1986.
[5] A. M. Bruckstein, M. Elad, and M. Zibulevsky, On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations, IEEE Trans. Inform. Theory, 54 (2008), pp. 4813–4820. · Zbl 1319.15007
[6] S.-H. Chang, P. C. Cosman, and L. B. Milstein, Chernoff-type bounds for the Gaussian error function, IEEE Trans. Commun., 59 (2011), pp. 2939–2944.
[7] Z. Di, S. Leyffer, and S. M. Wild, Optimization-based approach for joint X-ray fluorescence and transmission tomographic inversion, SIAM J. Imaging Sci., 9 (2016), pp. 1–23, https://doi.org/10.1137/15M1021404. · Zbl 1381.94015
[8] D. L. Donoho and J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming, Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 9446–9451. · Zbl 1135.90368
[9] S. Dragomir, On the trapezoid formula for mappings of bounded variation and applications, Kragujevac J. Math., 23 (2001), pp. 25–36.
[10] D. A. Girard, Optimal regularized reconstruction in computerized tomography, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 934–950, https://doi.org/10.1137/0908076. · Zbl 0638.65094
[11] R. Guckenberger, Determination of a common origin in the micrographs of tilt series in three-dimensional electron microscopy, Ultramicroscopy, 9 (1982), pp. 167–173.
[12] D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, TomoPy: A framework for the analysis of synchrotron tomographic data, J. Synchrotron Radiat., 21 (2014), pp. 1188–1193.
[13] D. Gürsoy, Y. P. Hong, K. He, K. Hujsak, S. Yoo, S. Chen, Y. Li, M. Ge, L. M. Miller, Y. S. Chu, et al., Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection, Sci. Rep., 7 (2017), 11818.
[14] K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki, and S. Siltanen, Sparse tomography, SIAM J. Sci. Comput., 35 (2013), pp. B644–B665, https://doi.org/10.1137/120876277.
[15] P. C. Hansen and J. H. Jørgensen, Total variation and tomographic imaging from projections, in Proceedings of the 36th Conference of the Dutch-Flemish Numerical Analysis Communities, 2011.
[16] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503, https://doi.org/10.1137/0914086. · Zbl 0789.65030
[17] K. M. Hanson and G. W. Wecksung, Bayesian approach to limited-angle reconstruction in computed tomography, J. Opt. Soc. Amer., 73 (1983), pp. 1501–1509.
[18] M. Hayashida, S. Terauchi, and T. Fujimoto, Automatic coarse-alignment for TEM tilt series of rod-shaped specimens collected with a full angular range, Micron, 41 (2010), pp. 540–545.
[19] L. Houben and M. B. Sadan, Refinement procedure for the image alignment in high-resolution electron tomography, Ultramicroscopy, 111 (2011), pp. 1512–1520.
[20] J. Hsieh, B. Nett, Z. Yu, K. Sauer, J.-B. Thibault, and C. A. Bouman, Recent advances in CT image reconstruction, Curr. Radiol. Rep., 1 (2013), pp. 39–51.
[21] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.
[22] W. A. Kalender, X-ray computed tomography, Phys. Med. Biol., 51 (2006), pp. R29–R43.
[23] M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), pp. 1537–1563. · Zbl 1062.62260
[24] R. M. Lewis and S. G. Nash, Model problems for the multigrid optimization of systems governed by differential equations, SIAM J. Sci. Comput., 26 (2005), pp. 1811–1837, https://doi.org/10.1137/S1064827502407792. · Zbl 1119.65346
[25] Y. Li, J. Qin, Y.-L. Hsin, S. Osher, and W. Liu, s-SMOOTH: Sparsity and smoothness enhanced EEG brain tomography, Front. Neurosci., 10 (2016), 543.
[26] C.-J. Lin and J. J. Moré, Newton’s method for large bound-constrained optimization problems, SIAM J. Optim., 9 (1999), pp. 1100–1127, https://doi.org/10.1137/S1052623498345075. · Zbl 0957.65064
[27] Y. Min, G. Haidong, L. Xingdong, M. Fanyong, and W. Dongbo, A new method to determine the center of rotation shift in 2D-CT scanning system using image cross correlation, NDT & E International, 46 (2012), pp. 48–54.
[28] M. J. Mlodzianoski, J. M. Schreiner, S. P. Callahan, K. Smolková, A. Dlasková, J. Šantorová, P. Ježek, and J. Bewersdorf, Sample drift correction in 3D fluorescence photoactivation localization microscopy, Opt. Express, 19 (2011), pp. 15009–15019.
[29] S. G. Nash, A survey of truncated-Newton methods, J. Comput. Appl. Math., 124 (2000), pp. 45–59. · Zbl 0969.65054
[30] K. Niinimäki, M. Lassas, K. Hämäläinen, A. Kallonen, V. Kolehmainen, E. Niemi, and S. Siltanen, Multiresolution parameter choice method for total variation regularized tomography, SIAM J. Imaging Sci., 9 (2016), pp. 938–974, https://doi.org/10.1137/15M1034076. · Zbl 1346.65072
[31] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, 2006.
[32] J. Radon, On the determination of functions from their integral values along certain manifolds, IEEE Trans. Med. Imag., 5 (1986), pp. 170–176, https://doi.org/10.1109/TMI.1986.4307775.
[33] K. Sauer, J. Sachs, and C. Klifa, Bayesian estimation of \(3\)-D objects from few radiographs, IEEE Trans. Nucl. Sci., 41 (1994), pp. 1780–1790.
[34] A. Spantini, A. Solonen, T. Cui, J. Martin, L. Tenorio, and Y. Marzouk, Optimal low-rank approximations of Bayesian linear inverse problems, SIAM J. Sci. Comput., 37 (2015), pp. A2451–A2487, https://doi.org/10.1137/140977308.
[35] S. Tomonaga, M. Baba, and N. Baba, Alternative automatic alignment method for specimen tilt-series images based on back-projected volume data cross-correlations, Microscopy, 63 (2014), pp. 279–294.
[36] A. Tripathi, I. McNulty, and O. G. Shpyrko, Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods, Opt. Express, 22 (2014), pp. 1452–1466.
[37] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), pp. 600–612.
[38] S. Webb, From the Watching of Shadows: The Origins of Radiological Tomography, CRC Press, 1990.
[39] H. Winkler and K. A. Taylor, Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography, Ultramicroscopy, 106 (2006), pp. 240–254.
[40] B. Zitova and J. Flusser, Image registration methods: A survey, Image Vision Comput., 21 (2003), pp. 977–1000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.