×

zbMATH — the first resource for mathematics

The eigenvalues slicing library (EVSL): algorithms, implementation, and software. (English) Zbl 1420.65050

MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F25 Orthogonalization in numerical linear algebra
65F50 Computational methods for sparse matrices
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed., SIAM, Philadelphia, 1999. · Zbl 0934.65030
[2] X. Andrade, D. A. Strubbe, U. De Giovannini, A. H. Larsen, M. J. T. Oliveira, J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. Verstraete, L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M. A. L. Marques, and A. Rubio, Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems, Phys. Chem. Chem. Phys., 17 (2015), pp. 31371–31396.
[3] P. Arbenz, R. Geus, and S. Adam, Solving Maxwell eigenvalue problems for accelerating cavities, Phys. Rev. Spec. Top. Accel. Beams, 4 (2001), 022001.
[4] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura, A numerical method for nonlinear eigenvalue problems using contour integrals, JSIAM Lett., 1 (2009), pp. 52–55. · Zbl 1278.65072
[5] J. Aurentz, V. Kalantzis, and Y. Saad, Cucheb: A GPU implementation of the filtered Lanczos procedure, Comput. Phys. Commun., 220 (2017), pp. 332–340. · Zbl 1411.65005
[6] J. Baglama, D. Calvetti, and L. Reichel, Algorithm 827: irbleigs: A MATLAB program for computing a few eigenpairs of a large sparse Hermitian matrix, ACM Trans. Math. Software, 29 (2003), pp. 337–348. · Zbl 1070.65529
[7] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist, Anasazi software for the numerical solution of large-scale eigenvalue problems, ACM Trans. Math. Software, 36 (2009), 13.
[8] N. Bell and M. Garland, Efficient sparse matrix-vector multiplication on CUDA, NVIDIA Technical report NVR-2008-004, NVIDIA Corporation, Santa Clara, CA, 2008.
[9] N. Bell and M. Garland, Implementing sparse matrix-vector multiplication on throughput-oriented processors, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, New York, 2009, ACM, New York, 2009, 18.
[10] M. Bollhöfer and Y. Notay, JADAMILU: a software code for computing selected eigenvalues of large sparse symmetric matrices, Comput. Phys. Commun., 177 (2007), pp. 951–964. · Zbl 1196.65072
[11] A. Buluc, S. Williams, L. Oliker, and J. Demmel, Reduced-bandwidth multithreaded algorithms for sparse matrix-vector multiplication, in Parallel and Distributed Processing Symposium (IPDPS), 2011 IEEE, Piscataway, NJ, 2011, pp. 721–733.
[12] W. R. Burdick, Y. Saad, L. Kronik, M. Jain, and J. Chelikowsky, Parallel implementations of time-dependent density functional theory, Comput. Phys. Commun., 156 (2003), pp. 22–42.
[13] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: Cholmod, supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Software, 35 (2008), 22.
[14] M. Christen, O. Schenk, and H. Burkhart, General-purpose sparse matrix building blocks using the NVIDIA CUDA technology platform, in First Workshop on General Purpose Processing on Graphics Processing Units, 2007, p. 32.
[15] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization, Math. Comp., 30 (1976), pp. 772–795. · Zbl 0345.65021
[16] T. Davis, Direct Methods for Sparse Linear Systems, Fundam. Algorithms, SIAM, Philadelphia, 2006.
[17] T. A. Davis, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30 (2004), pp. 196–199. · Zbl 1072.65037
[18] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Software, 38 (2011), 25.
[19] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, A set of level 3 basic linear algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17. · Zbl 0900.65115
[20] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extended set of Fortran basic linear algebra subprograms, ACM Trans. Math. Software, 14 (1988), pp. 1–17. · Zbl 0639.65016
[21] P. Giannozzi et al., Quantum Expresso, http://www.quantum-espresso.org.
[22] H. R. Fang and Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue problems, SIAM J. Sci. Comput., 34 (2012), pp. A2220–A2246.
[23] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998), pp. 94–125. · Zbl 0924.65027
[24] L. Giraud, J. Langou, M. Rozložník, and J. Van Den Eshof, Rounding error analysis of the classical Gram-Schmidt orthogonalization process, Numer. Math., 101 (2005), pp. 87–100.
[25] L. Giraud, J. Langou, and M. Rozloznik, The loss of orthogonality in the Gram-Schmidt orthogonalization process, Comput. Math. Appl., 50 (2005), pp. 1069–1075. · Zbl 1085.65037
[26] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D.C. Allan, First-principles computation of material properties: The ABINIT software project, Comp. Mater. Sci., 25 (2002), pp. 478–492.
[27] Y. Hasegawa, J. Iwata, M. Tsuji, D. Takahashi, A. Oshiyama, K. Minami, T. Boku, F. Shoji, A. Uno, M. Kurokawa, H. Inoue, I. Miyoshi, and M. Yokokawa, First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer, in Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11, New York, 2011, ACM, New York, 2011, 1.
[28] V. Hernández, J. E. Román, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31 (2005), pp. 351–362.
[29] A. Klinvex, F. Saied, and A. Sameh, Parallel implementations of the trace minimization scheme tracemin for the sparse symmetric eigenvalue problem, Comput. Math. Appl., 65 (2013), pp. 460–468. · Zbl 1319.65027
[30] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov, Block locally optimal preconditioned eigenvalue xolvers (BLPOEX) in Hypre and PETSc, SIAM J. Sci. Comput., 29 (2007), pp. 2224–2239. · Zbl 1149.65026
[31] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541. · Zbl 0992.65028
[32] G. Kresse and J. J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B (3), 54 (1996), pp. 11169–11186.
[33] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X. Huang, Y. Saad, and J. R. Chelikowsky, PARSEC ­ the pseudopotential algorithm for real-space electronic structure calculations: Recent advances and novel applications to nano-structure, Phys. Stat. Sol. B, 243 (2006), pp. 1063–1079.
[34] C. Lanczos, Applied Analysis, Dover, New York, 1988.
[35] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, ACM Trans. Math. Software, 5 (1979), pp. 308–323. · Zbl 0412.65022
[36] R. B. Lehoucq, C. C. Yang, and D. C. Sorensen, ARPACK User’s Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998. · Zbl 0901.65021
[37] R. Li and Y. Saad, GPU-accelerated preconditioned iterative linear solvers, J. Supercomput., 63 (2013), pp. 443–466.
[38] R. Li, Y. Xi, E. Vecharynski, C. Yang, and Y. Saad, A thick-restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems, SIAM J. Sci. Comput., 38 (2016), pp. A2512–A2534. · Zbl 1348.65071
[39] L. Lin, Y. Saad, and C. Yang, Approximating spectral densities of large matrices, SIAM Rev., 58 (2016), pp. 34–65. · Zbl 1338.15026
[40] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, Efficient sparse matrix-vector multiplication on x86-based many-core processors, in Proceedings of the 27th International ACM Conference on International Supercomputing, ACM, New York, 2013, pp. 273–282.
[41] Nvidia, cuBLAS Library User Guide, v8.0 ed., Oct. 2018, https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf.
[42] Nvidia, cuSPARSE Library User Guide, v10.0 ed., Oct. 2018, https://docs.nvidia.com/cuda/pdf/CUSPARSE_Library.pdf.
[43] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics Appl. Math. 20, SIAM, Philadelphia, 1998.
[44] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B (3), 79 (2009), 115112.
[45] E. Polizzi, A High-Performance Numerical Library for Solving Eigenvalue Problems: FEAST Solver v\(2.0\) User’s Guide, preprint, arXiv:1203.4031v1, 2012.
[46] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Classics Appl. Math. 66, SIAM, Philadelphia, 2011.
[47] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Appl. Math., 159 (2003), pp. 119–128, https://doi.org/10.1016/S0377-0427(03)00565-X. · Zbl 1037.65040
[48] T. Sakurai and H. Tadano, CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems, Hokkaido Math. J., 36 (2007), pp. 745–757, https://doi.org/10.14492/hokmj/1272848031. · Zbl 1156.65035
[49] A. Sameh and Z. Tong, The trace minimization method for the symmetric generalized eigenvalue problem, J. Comput. Appl. Math., 123 (2000), pp. 155–175. · Zbl 0964.65038
[50] A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem, SIAM J. Numer. Anal., 19 (1982), pp. 1243–1259. · Zbl 0493.65017
[51] O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker, Pardiso: A high-performance serial and parallel sparse linear solver in semiconductor device simulation, Future Generation Comput. Syst., 18 (2001), pp. 69–78. · Zbl 1032.68172
[52] G. Schofield, J. R. Chelikowsky, and Y. Saad, A spectrum slicing method for the Kohn-Sham problem, Comput. Phys. Commun., 183 (2012), pp. 497–505. · Zbl 1264.82014
[53] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14 (2002), pp. 2717–2744.
[54] A. Stathopoulos and J. R. McCombs, PRIMME: Preconditioned iterative multimethod eigensolver: Methods and software description, ACM Trans. Math. Software, 37 (2010), 21. · Zbl 1364.65087
[55] A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245. · Zbl 0924.65028
[56] P. S. Vassilevski and T. V. Kolev, Parallel eigensolver for H(curl) problems using H\(1\)-auxiliary space AMG preconditioning, Technical report, Lawrence Livermore National Laboratory, Livermore, CA, 2006.
[57] C. Vömel, S. Z. Tomov, O. A. Marques, A. Canning, L. Wang, and J. J. Dongarra, State-of-the-art eigensolvers for electronic structure calculations of large scale nano-systems, J. Comput. Phys., 227 (2008), pp. 7113–7124. · Zbl 1141.82346
[58] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, AUGEM: Automatically generate high performance dense linear algebra kernels on x86 CPUs, in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, New York, 2013, ACM, New York, 2013, 25.
[59] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, Optimization of sparse matrix-vector multiplication on emerging multicore platforms, in Supercomputing, 2007, ACM, New York, 2007, pp. 1–12.
[60] K. Wu, A. Canning, H. D. Simon, and L.-W. Wang, Thick-restart Lanczos method for electronic structure calculations, J. Comput. Phys., 154 (1999), pp. 156–173. · Zbl 0963.82048
[61] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616. · Zbl 0969.65030
[62] Y. Xi, R. Li, and Y. Saad, Fast computation of spectral densities for generalized eigenvalue problems, SIAM J. Sci. Comput., 40 (2017), pp. A2749–A2773.
[63] Y. Xi and Y. Saad, Computing partial spectra with least-squares rational filters, SIAM J. Sci. Comput., 38 (2016), pp. A3020–A3045.
[64] I. Yamazaki, Z. Bai, H. Simon, L.-W. Wang, and K. Wu, Adaptive projection subspace dimension for the thick-restart Lanczos method, ACM Trans. Math. Softw., 37 (2010), 27. · Zbl 1364.65089
[65] Y. Zhou, J. Chelikowsky, and Y. Saad, Chebyshev-filtered subspace iteration method free of sparse diagonalization for solving the Kohn-Sham equation, J. Comput. Phys., 274 (2014), pp. 770–782. · Zbl 1351.82098
[66] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration, Phy. Rev. E (3), 74 (2006), 066704.
[67] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Self-consistent-field calculation using Chebyshev-filtered subspace iteration, J. Comput. Phys., 219 (2006), pp. 172–184. · Zbl 1105.65111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.