×

zbMATH — the first resource for mathematics

A rational QZ method. (English) Zbl 1420.65044

MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A18 Eigenvalues, singular values, and eigenvectors
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.
[2] M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with an application to rational approximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894–916. · Zbl 1319.65028
[3] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra, Matrix market: A web resource for test matrix collections, in Proceedings of the IFIP TC2/WG2.5 Working Conference on Quality of Numerical Software: Assessment and Enhancement, Chapman & Hall, London, UK, 1997, pp. 125–137.
[4] G. De Samblanx and A. Bultheel, Using implicitly filtered RKS for generalised eigenvalue problems, J. Comput. Appl. Math., 107 (1999), pp. 195–218. · Zbl 0944.65038
[5] G. De Samblanx, K. Meerbergen, and A. Bultheel, The implicit application of a rational filter in the RKS method, BIT, 37 (1997), pp. 925–947. · Zbl 0890.65035
[6] H. Elman, A. Ramage, and D. Silvester, Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Software, 33 (2007), pp. 2–14. · Zbl 1365.65326
[7] H. Elman, A. Ramage, and D. Silvester, IFISS: A computational laboratory for investigating incompressible flow problems, SIAM Rev., 56 (2014), pp. 261–273. · Zbl 1426.76645
[8] J. G. F. Francis, The QR transformation a unitary analogue to the LR transformation—Part \(1\), Comput. J., 4 (1961), pp. 265–271.
[9] J. G. F. Francis, The QR transformation—Part 2, Comput. J., 4 (1962), pp. 332–345.
[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
[11] B. K\aagström and D. Kressner, Multishift variants of the QZ algorithm with aggressive early deflation, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 199–227.
[12] B. K\aagström and P. Poromaa, Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: Theory, algorithms and software, Numer. Algorithms, 12 (1996), pp. 369–407. · Zbl 0859.65036
[13] L. Kaufman, Some thoughts on the QZ algorithm for solving the generalized eigenvalue problem, ACM Trans. Math. Software, 3 (1977), pp. 65–75. · Zbl 0348.65033
[14] D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems, Lect. Notes Comput. Sci. Eng. 46, Springer, New York, 2005.
[15] T. Mach, M. S. Pranic, and R. Vandebril, Computing approximate (block) rational Krylov subspaces without explicit inversion with extensions to symmetric matrices, Electron. Trans. Numer. Anal., 43 (2014), pp. 100–124. · Zbl 1302.65078
[16] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), pp. 1–52.
[17] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79 (2009), 115112.
[18] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl., 58 (1984), pp. 391–405. · Zbl 0554.65025
[19] A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, in Recent Advances in Iterative Methods, IMA Vol. Math. Appl. 60, Springer, New York, 1994, pp. 149–164. · Zbl 0803.65045
[20] A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems, II: Matrix pairs, Linear Algebra Appl., 197–198 (1994), pp. 283–296. · Zbl 0810.65031
[21] A. Ruhe, Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils, SIAM J. Sci. Comput., 19 (1998), pp. 1535–1551. · Zbl 0914.65036
[22] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Appl. Math., 159 (2003), pp. 119–128. · Zbl 1037.65040
[23] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385. · Zbl 0763.65025
[24] M. Van Barel and P. Kravanja, Nonlinear eigenvalue problems and contour integrals, J. Comput. Appl. Math., 292 (2016), pp. 526–540. · Zbl 1329.65109
[25] R. Van Beeumen, K. Meerbergen, and W. Michiels, Subspace iteration for generalized eigenvalue problems via contour integration and rational Krylov methods, submitted, 2017.
[26] P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. and Stat. Comput., 2 (1981), pp. 121–135. · Zbl 0463.65024
[27] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semiseparable Matrices, Volume II: Eigenvalue and Singular Value Methods, Johns Hopkins University Press, Baltimore, MD, 2008. · Zbl 1175.65045
[28] R. Vandebril and D. S. Watkins, A generalization of the multishift QR algorithm, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 759–779. · Zbl 1261.65039
[29] R. Vandebril and D. S. Watkins, An extension of the QZ algorithm beyond the Hessenberg-upper triangular pencil, Electron. Trans. Numer. Anal., 40 (2013), pp. 17–35. · Zbl 1288.65053
[30] R. C. Ward, The combination shift QZ algorithm, SIAM J. Numer. Anal., 12 (1975), pp. 835–853. · Zbl 0342.65022
[31] D. S. Watkins, Bulge exchanges in algorithms of QR-type, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 1074–1096. · Zbl 0916.65034
[32] D. S. Watkins, Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 364–375.
[33] D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, 2007.
[34] D. S. Watkins, Amer. Math. Monthly, (2011), pp. 387–403.
[35] D. S. Watkins and L. Elsner, Theory of decomposition and bulge-chasing algorithms for the generalized eigenvalue problem, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 943–967. · Zbl 0808.65027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.